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mohnopole
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system

-Berry phase under mean-field treatment
-Fractional monopole
-Many-body effect of Berry phase
-Hannay angle

+ Summary and discussion



WHATSHIHE BERRYAIDEA
Suppose that the Hamiltonian H(r) depends on a set of parameters

R

For each value of R, the following eigenvalue equation is valid:

H(R)[n(R)) = E(R)|n(R))

slowly in time the adiabatic theorem

w(0)) < [n(R(0))) = |w(t))oc|n(R(1))

What if for same value of t=T:  R(T)=R(0)?

Certainly: ‘ W(T )> . ‘ W(O)>




BERRY PEHASE

M1 [BELRIRY IPIROIC: [RONE SOIC, A 897,45 ((1L9)8)4%)

Then the state returns to its initial form but since eigenstates are defined
up to a phase factor, the state could acquire a phase due to the
and evolution that took place.

7a(T) = (0 (R () [N (R (1) e
= A <R

Geometric phase

A(R):(n(R)\dd—R\n(R»




DeVEIEPMENES OF B PhaSE

Frank Wilczek and A. Zee® Phys. Rev. Lett. 52, 2111-2114 (1984)
“Appearance of Gauge Structure in Simple Dynamical Systems”

The conception was generalized to degenerate system

Y. Aharonov and J. Anandan Phys. Rev. Lett. 58, 1593-1596 (1987)
Phase change during a cyclic quantum evolution

The conception was generalized to non-adiabatic
evolution, so-called AA phase

What is meant by “geometrical” in the geometric phase?

A physically observable feature of a that
depends only on the path described during its evolution.




The conneciions

For a local basis of a manifold, e  (X)

The connections build up the relations between
local basis of one point and its neighbor

L, =|e,(x+dx).e, (x))-5,, )/ dx

So given a set of connections just define a rule
to transport basis on the manifold



Indeed the eigen equation build up a line bundle
In parameter space

H(R)[n(R)) = E(R)|n(R))
e”n(R))

The adiabatic evolution
of quantum system just
yields a way of transport
eigen vector along the
given path in parameter
space, Sso it defines a ]

connection. <:;\




The conneciions

For a local basis of a manifold, eﬂ (x)
The natural connections is just

r,, =(e,(x)de,(x))

Berry connections are just the natural
connection of eigenvectors (B. Simon PRL 51,
2167 (1983) )

An(R) =(n(R)|d|m(R))




The connection of bundle is gauge potential
For a U(1) transformation ewR)‘ n(R)>

A,(R) - A (R)—idA(R)
The differential two form give rise to Berry curvature

F"w(R)=3,A"(R)-0,A"(R)
With the Stocks formula, we have

"= A-dR=|F.do

where C =0S



Gauss=Bonne=Chern Thneceren

For a smooth, oriented compact manifold, the integral of
curvature over the whole manifold will give rise to Chern
number and its equals to Euler characteristic of the
Manifold.

1
E-“SFdG — gZ

Here g is the charge and X is the Euler characteristic,
which can be obtained with relation

s — Name Imace Vertices Edges Faces Euler characteristic:
y=V-E+F o Vs EigsFces cornurc
Tetrahedron & 4 6 4 9

Hexahedron or cube 8 12 6 2

where V, E, and F are respectively the ﬁ

numbers of vertices (corners), edges and Octahedon Q 6 |12 )8 :
faces in the polyhedron, which is Dodecahedon @

topology homeomorphism with the a

manifold. Therefore ,for sphere it is 2.

20 30 12 2

Icosahedran 12 30 20 2


http://en.wikipedia.org/wiki/Vertex_(geometry)
http://en.wikipedia.org/wiki/Edge_(geometry)
http://en.wikipedia.org/wiki/Face_(geometry)

MIONOPOLEFANDIDIRAC SIFRINIG

Monopole is an isolated charge with
magnetic charge g. If it exist, its vector
potential should be
g(l—cosé?)é

Rsing *
Then its field should be

R .
B=9E§+& —////jﬁfﬁffﬂﬂﬁb Bs
B, = —4g5(X)5(Y)s,

= for Z<0

Indeed, Strange string guarantees the loop integral of gauge potential is
unique, since each closed path relates with two surfaces, upper half sphere
or under one. Dirac argue that it's the removable singularity of vector
potential, so it should give nothing to electron motion, so

dreg =27 EEEEp eg:%




BRIy phase o twoe level system
2nel Vircual mmenepole
The generic two level system

H=-R.5, R=R(sinécosg,sindsing,cosé)

cosge‘”’
2
~76
sin—
2

It has two eigenstates n>r'”299 } n,)=

—COS—
2

The Berry connection and curvature corresponding

to ground state are
L0080 ok R

A o g o e

Obviously, it's a field of monopole with charge g=1/2. Here
we have ignored the strange string, which is dependent on
specific gauge.



ATOM MOLECULEESCONVIERSION

Association of ultracold atoms into
molecules is currently a topic of
much experimental and theoretical
Interest with important applications

|I'|'.-$‘I'I"I\II:|E’¢'H S.E!i};'ll{'!',l(‘:ﬂ —_—

ranging from the search for the o Bied
permanent electric dipole moment X

to BCS-BEC crossover physics .

Through Feshbach resonance or \

photoassociation , a pair of atoms

Energy

can convert into a bounded

molecule. b/

Internuclear Distance



The simplest mede: single meeke model

Rcos@ ¢ -+ - ~g
H o= — (Db — dfn) +
/3 Rsin® Cid St At
"1, < 5 ((_' P e + h.f.-.)
L s

(wyy, wyand(C w5, w, ) arethe annihilation and
creation operators for atom and molecule respectively.

It is invariant under co-diagonal U(1) transformation

[7(n) = 9 oy — [0
77, O =19 2,



VieanEhieldiapphoximation

. %E_
Vi PRsinoy 2 Bt

0 2u ) \ ¢
—cosf 1 _




Berry Formula fails to give the geometric phase
in adiabatic limit for this system

Consider ¥ varies slowly with time, we calculate the
geometric phase and comparing it with Berry formula
we find it does not fulfill all the phase shift.
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Calculating] tne CEOmEHrIC PNaSE

q = —argy + 2arg iy

Reos# NE —'i‘lﬂRsil]ﬂ'llfJ*
‘. d () . Uy bR — 2 \/;E 1

2

dq | |
p— — H(p, q) — A(p,q),

OH . OH

— —5—q=Q— 5—1];

H(p,q) = 4 (1 —3p) + p(1 - 2p)/peos(q — )
A(p,q) = 5(1 — 2p)/pPcos(q — @)




p =p(R) + dp and g = g(R) + dq

= frie | g



1 z
_.d_L —_— = J_ - - '[-?_'_-
6o \I‘ j; 0 2 4 w72

in[A(R
For a co-diagonal U(1) transformation em[ : )]‘n(R»

A(R) = A(R) —idA(R)



Let us re-scale the parameter space as

R = (X'=\/5xYy' = /8,72 =2)

— _-5;.'“”__1}'.""'_
o= (1 o) M
- "'."': X'21% '.f'_'_|_‘;:’.f_‘- .

R’ 1

B=xA'=¢g—, g=-=
x. 9o 9=

Obviously it is the field of monopole with charge
1
g — 390

g0 =1/2 s the elementary charge of monopole.



Comparing Widn convenidenal twe level mockel

= 8 ® Two level system
solid angle T integer closed t,f‘ 0

.fmjrr}cmﬂlﬁ patit . ™ Bloch vector Is

n = (2Re[y, w,1,21m[w, v, ],

) v, |2 -y, |2)

Berry sphere Bloch sphere

(a’) Z
T fractional

solid angle
monopole

r

Atom-molecule system

Bloch vector is
n, = (2v2 Re[(7)’%],

forbidden g (a) £ A : .
cone 1 WL AL ol __ Dals
defected Berry sphere deformed Bloch sphere 21""' 21‘]‘]‘1{ |: il.-ll } s E}" | 1 | 2 |L 2 | ]

The Berry sphere of this system is a broken sphere with a

27

forbidden cone (yellow region) bounded by ¢ - =~



For the two level system, the parameter space is a
compact 3-D manifold, so

1
ZLBdG/gO:Z:Z

However, for the atom-molecule system, the
parameter space is a 3-D manifold with boundary,
Its topology is equivalent with a 2-D surface. And

we find

1 g
— | B-do/g=y+=—=1+=
27zjs il gl

Here y = 1 is the topology index of 2-D surface.

The term Y2 may contain the geometric property of
the boundary.



VMany-oeely ciiect ©if [BerRy phase

For the quantum system
: Rcos@ [ -+ -
H = {; (L'{'n‘..'l — 'l'_.':lg-!_-'g) —+

/3 Rsin® Lo o~f o o
11‘ < 5 (f.'_”" L";r g Yo + h.c’.'.)

By choosing the Fock state

i --'I' N —2mn N "I-i- -

™ T £ ¥ I air | n -

N — 2m,m) = 2 20
' w./[_ N—2m)! vm!

We can get the matrix elements
H;; = (N —2i,i| H|N — 23, j)



N/2
glp =0)) = > Cn(0)IN — 2m,m)

m=>0

N/2 |
lg(w)) = 2. Crret?WN=2m)/2IN — 2m_ m)

m—=>0




The total phase acquired during adiabatic evolution is

AV = [EN(t)dt+ [ AN dg

In mean-field treatment ~ 1g) = (jo))""

with single particle wave function [

Thus we expect

OEN AN
I"j — A —

ON ON

Therefore - — 7%






For a classical integrable system H(p.a:R) , p={p;} a=1{a!

One can make a canonical transformation to action-agnle
variables with generating function S(q,I;R)

{p,q}«< S(q,1;R) > {0, 1}
g Ol
And new Hamiltonian takes the form

o oS dR
H(@,1;R)=H(6,1; R)+——
(6,1:R) = H( B

d_, do_oH
g ides



For system is time independent, one has

dé oH
dt ol
Consider R=R(t) varies with time slowly and R(T)=R(0). In

the classical adiabatic evolution, the actions are invariant,
but the angles should be

= o(l;R)

g =61(0)+}@(|,R(t))dt+A6’i(l;C)

where A6,(1;C) is the so-call Hannay angles, which is
only dependent on the path C.

o oS dR
H(,1;R)=H(6,1; R)+——
(0,1;R) = H( o

0 ( 0S
O AG(1;C)= dR
e e o0 e 20D ﬁfaui(aRj

A2t ol




For a given R
A classical orbit

1
—o¢pdg=(n+1/2)n
~—ppda=(n+1/2)

SR TN |
Its counterpart in quantum

description Is an eigenstate

q

One can have hannay angle in classical description
And have Berry phase in quantum description

Berry pointed out in semi-classical limit, the Hannay angle
and Berry phase have derivative relation

AG ()=
on

MV Berry J PHYS A 18, 15(1985); JH Hannay J PHYS. A 18, 221(1985)




For a finite levels quantum system, its dynamic can be exactly
casted Into a classical integrable Hamiltonian system. For
example, a two-level system,

R e ke

o, =-arg(a) p,=laf +|b[ q,=arg(b)-arg(a) p,=[bf

H(p,q;R) = 2(p, - 2p,) + 20~/ (P, = P,) P, €OS(q — @)

dg, dg,
e Hih iR
™ P, it (p,q;R)

:
One can obtain q, = j E(t)dt +y,
0

It so happens ys =—A6,(1,=0,C) = 35 pdg
o
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Exact integrability of the two-level system: Berry’s phase and nonadiabatic corrections

Nilanjana Datta and Gautam Ghosh
Saha Institute of Nuclear Physics, 92, Acharya Prafulla Chandra Road, Calcutra 700009, India

M. H. Engineer
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(Received 25 August 1988)

The general time-dependent quantum two-level system is shown to admit an exact invariant. This
leads to a classical formulation of the problem, which is then solved by standard techniques of Ham-
iltoni t ic limit

H=e[1)(1]|—e[2)2[+y[1)(2|+y*[2)(1] ) (=C,11)+C,y[2))

L=(1/2y*)C,—ieC, /)P —yC3}/(2#),

p= aaé =(1/7*)(Cy—ig,Cy /)

2
H=(1/2)y*p*+2iepC, /fi+yC3/#) .

where an overdot indicates time differentiation. The cor-
responding equation for C, is obtained by the replace-
ment ¥ *




HANNAY ANGLEEOR OUR MEDEL
H = A([91]* — [¥2I?) + Bly1|*[v2] cos (C2 — 261 — ),

2
d, = <1, plzll//1|2 +2 |y, |

P2 = |Ya|®, and qa = &2 — 2§

H(p1;p2,92) = A (p1 — 3p2)+B(p1—2p2)+/p2 cos (g2 — p)

We then expand the Hamiltonian around (ps,qs)

H(p1:p2, ¢2) = Ho(p1) +T(p1)0p+G(p1)ép> +F (p1)dq”

JOH(p1; p2, . —
T(p1) = % =B —1)/2{pa,
= Poqa

_ THeim@)| gy 4 6y) ()

FPa:qo

. O?H(p1:p2, g2 =
F(p1) = % = —B(p1 — 2P5)\/Do-

Po.qa




2 [E F NES
-/w [a_a(%—fﬂ)ﬂ] dqo

C(g2)
2.7 f [1— 22" da,
0

OS(J1, J2,q1,q2: @)
ot

T3(J1)

4G(J1)

H(J1. 01 J2.02) = H (Jy, J2) +

H (Jy, Jo) = 2[F (J1) G(J)]Y? Jo + Ho(Jy) —

The Hannay angle is then obtained as



+ We investigate the Berry phase and Hannay angle of diabatic
guantum evolution in an atom-molecule conversion system
that is governed by a nonlinear Schrodinger equation.

+ We find that the Berry phase in such nonlinear system
consists of two parts: the usual Berry connection term and a
novel term from the nonlinearity brought forth by the atom-
molecule coupling.

+ The total geometric phase can be viewed as the flux of the
magnetic field of a monopole through the surface enclosed
by a closed path in parameter space. The charge of the
monopole, however, is found to be one third of the
elementary charge of the usual quantized monopole.

+ We also derive the classical Hannay angle of a geometric
nature associated with the adiabatic evolution. It exactly
equals to minus Berry phase.






