Spatially Modulated Interaction Induced Bound States and Resonances

> Ran Qi Institute for Advanced Study Tsinghua University Beijing, China

Ran Qi and Hui Zhai, PRL. 106, 163201 (2011)

DAMOP 2011

Feshbach resonance is an important tool to achieve strong interactions in ultracold Fermi gases

magnetic Feshbach resonance; optical Feshbach resonance; confinement induced resonance

Idea of Optical Feshbach resonance

Optical Feshbach resonance

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).

Optical Feshbach resonance with Standing wave

Spatial dependent interaction

Two-body interaction potential:

$$V(\mathbf{r_1}, \mathbf{r_2}) = V(\mathbf{r_1} - \mathbf{r_2})$$

Spatial independent

Spatial dependent interaction

Two-body interaction potential:

$$V(\mathbf{r_1}, \mathbf{r_2}) = V\left(\mathbf{r_1} - \mathbf{r_2}, \frac{\mathbf{r_1} + \mathbf{r_2}}{2}\right)$$

Spatially periodically modulated

 $\mathcal{H} = -\frac{\hbar^2}{4m} \nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{m} \nabla_{\mathbf{r}}^2 + v(\mathbf{r}, \mathbf{R})$

$$v(\mathbf{r}) = \begin{pmatrix} -V_0 & \hbar\Omega(\mathbf{R}) \\ \hbar\Omega(\mathbf{R}) & -V_c \end{pmatrix}$$

 $\Omega(\mathbf{R}) = \Omega \cos(Kx)$

 $a_{s}(x)$ is spatially dependent and modulates periodically in space

Experimental Realization

Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate, PRL, 105, 050405 (2010) Kyoto group

How $a_s(x)$ modulates in space?

$$a_{\rm s} = a_{\rm bg} \left(1 - \frac{\Omega^2}{\Omega^2 - \Omega_0^2} \right) \qquad \Omega(\mathbf{R}) = \Omega \cos(Kx)$$

$$a_{\rm s}(x) = a_{\rm bg} \left(1 - \frac{\Omega^2 \cos^2(Kx)}{\Omega^2 \cos^2(Kx) - \Omega_0^2} \right)$$

Any other physics effects?

What we have done: Solve two-body problem of this Hamiltonian

- 0

1

$$\mathcal{H} = -\frac{\hbar^2}{4m} \nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{m} \nabla_{\mathbf{r}}^2 + v(\mathbf{r})$$
$$v(\mathbf{r}) = \begin{pmatrix} -V_0 & \hbar\Omega(\mathbf{R}) \\ \hbar\Omega(\mathbf{R}) & -V_c \end{pmatrix}$$

- 0

 $\Omega(\mathbf{R}) = \Omega \cos(Kx)$

Results I: Bound States

Results II: Scattering Resonances

$$a_{\text{eff}} = \lim_{k \to 0} \frac{\tan \delta(k)}{k}$$

Results III: Local Scattering Length --- related to local interaction energy

Bethe-Peierls condition:

$$\lim_{r \to 0} \psi(r, x) = \frac{1}{r} - \frac{1}{a_{loc}(x)}$$

Local scattering length

$$a_{\rm loc}(x) = -\lim_{r \to r_0} \frac{r\psi_{\rm o}(x,r)}{\partial_r(r\psi_{\rm o}(x,r))}$$

The mean-field energy for a BEC:

$$\mathcal{E} = \int dx \left[-\frac{\hbar^2}{2m} \varphi^* \nabla^2 \varphi + \frac{4\pi\hbar^2}{m} a_{loc}(x) n^2(x) \right]$$

Results III: Local Scattering Length

Exact formula:

Simplified

formula

$$a_{\rm loc}(x) = \frac{1 - \sum_{m \neq 0} U_m \cos(mKx) / U_0}{a_{\rm eff}^{-1} - \sum_{m \neq 0} U_m |m| K \cos(mKx) / (2U_0)}$$

$$Ka_{\text{eff}} \ll 1 \quad a_{\text{loc}}(x) = a_{\text{eff}} \left[1 - \frac{2U_2}{U_0} \cos(2Kx) \right]$$
$$Ka_{\text{eff}} \gg 1 \quad a_{\text{loc}}(x) = \frac{1}{K} \left[1 - \frac{U_0}{2U_2 \cos(2Kx)} \right]$$

Results III: Local Scattering Length

Summary: Take Home Message

New Mechanism	New System	New Features
Two-body interaction	Alkali-earth-(like)	Spatially dependent
potential has center-	atomic gases: Sr,	local scattering
of-mass dependence	Ca, Yb	length