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Feshbach resonance is an important tool to achieve 
strong interactions in ultracold Fermi gases 

ing referred to as the entrance channel. The other po-
tential Vc!R", representing the closed channel, is impor-
tant as it can support bound molecular states near the
threshold of the open channel.

A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case !see Sec. VI.A". Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. !1995", for the s-wave scattering length a as a func-
tion of the magnetic field B,

a!B" = abg#1 −
!

B − B0
$ . !1"

Figure 2!a" shows this resonance expression. The back-
ground scattering length abg, which is the scattering
length associated with Vbg!R", represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg!R". The parameter B0
denotes the resonance position, where the scattering

length diverges !a→ ±"", and the parameter ! is the
resonance width. Note that both abg and ! can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B0+!. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2!b" relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by #$, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb = %2/2$a2, !2"

where $ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detuning
B−B0 and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer !see Sec. V.B.2".

2This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.

0

V
c
(R)

E

entrance channel or
open channel

E
ne

rg
y

closed channel
E

C

0 Atomic separation R

V
bg

(R)

FIG. 1. !Color online" Basic two-channel model for a Fesh-
bach resonance. The phenomenon occurs when two atoms col-
liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy Ec supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E→0. Resonant coupling is then
conveniently realized by magnetically tuning Ec near 0 if the
magnetic moments of the closed and open channels differ.

-4

-2

0

2

4

-2 -1 0 1 2

-0.5

0.0

-0.1 0.0
-0.01

0.00

(a)

(b)

a/
a bg ∆

E
/(

δµ
∆)

(B-B
0
)/∆

E
b

FIG. 2. !Color online" Feshbach resonance properties. !a"
Scattering length a and !b" molecular state energy E near a
magnetically tuned Feshbach resonance. The binding energy is
defined to be positive, Eb=−E. The inset shows the universal
regime near the point of resonance where a is very large and
positive.
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Idea of Optical Feshbach resonance
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Optical Feshbach resonance
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Optical Feshbach resonance with Standing wave



Spatial dependent interaction

Two-body interaction potential:

Spatial independent 
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Spatial dependent interaction
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Two-body interaction potential:

Spatially periodically modulated 
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is spatially dependent and modulates periodically in space
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Experimental Realization

Despite its potentially wide applicability, the use of OFR
has been scant [11]. One reason for this is that usually the
optical coupling also induces inelastic scattering, leading
to rapid atom depletion. The use of narrow transitions in
alkaline-earth-metal-like atoms [17] to avoid inelastic scat-
tering loss was successfully demonstrated in a recent ex-
periment in our group by using the 1S0-

3P1 intercombi-
nation transition in thermal gases of 172Yb and 176Yb [18].

In that earlier work, a relatively low inelastic scattering
rate was observed, an order of magnitude less than the case
of alkaline atoms, indicating the possibility of observing
large tunings of scattering length over short distances, as
we report here. In this work we extend this technique to a
condensate of 174Yb.

To demonstrate the capability of OFR to modulate the
s-wave scattering length on short length scales and also on
short time scales, we use a pulsed optical lattice beam as
the OFR light, as shown in Fig. 1(a). The application of a
pulsed optical lattice beam generally results in a diffraction
of a released BEC, which was previously studied both
theoretically and experimentally [12]. In a phase modula-
tion regime, where the exposure time of the optical lattice !
is much smaller than the minimum classical oscillation
period of the formed lattice, the effect of the lattice is

treated as a thin grating. The phase of the condensate
modified by the lattice has the form

"ðzÞ ¼ UðzÞ!@ ; (3)

with UðzÞ ¼ U0cos
2ðqzÞ, where q is the wave number of

the lattice laser and z is the direction along the lattice laser
propagation. The potential U0 experienced by the atoms in
the ground state at an antinode of the optical lattice is given
by

U0 ¼
@!2

"atom
þ 4#@2na

m
$a: (4)

The first term describes the atomic light shift, where !
and "atom correspond to the Rabi frequency and the detun-
ing of the OFR laser to the atomic excited state, respec-
tively. The second term represents the OFR-induced shift
of the mean-field energy and thus is proportional to the
scattering length variation $a and the atom density na. It is

noted that there is a mean-field energy UMF ¼ 4#@2na
m abg

across the condensate. However, it is not susceptible to the
OFR laser and does not contribute to the diffraction pat-
tern. It is clear from Eqs. (1) and (4) that the OFR dis-
persively varies the scattering length, and therefore the
mean-field energy, across a photoassociation resonance.
From the diffraction pattern of the condensate generated
from the phase modulation "ðzÞ imparted by the OFR, one
should be able to extract the variation of the scattering
length.
The method for the all-optical formation of the 174Yb

condensate is described in Ref. [19]. After the evaporation
in a crossed far-off resonant trap, an almost pure 174Yb
condensate is prepared with an atom number of up to 1:5%
105 in a typical harmonic trap potential ð!x;!y;!zÞ ¼
2#% ð32; 121; 199Þ Hz with corresponding Thomas-
Fermi radii of ð15:7; 4:2; 2:5Þ %m. A simple schematic of
the experimental process after the preparation of conden-
sate is shown in Fig. 1(a). Following the condensate for-
mation, we release the condensate from the trap by turning
off the far-off resonant trap lasers. At the release, the OFR
laser pulse of a 1D optical lattice is turned on for several
microseconds with a typical power of 1–100 %W with a
beam radius w ¼ 70 %m at the location of the condensate.
The OFR laser is tuned near the 1S0-

3P1 photoassociation
resonances with the vibrational quantum numbers v0 ¼ 11,
12, and 13, which correspond to the detuning"atom of&69,
&117, and &192 MHz, respectively [20]. After a TOF
time of typically 10 ms, the absorption image is taken for
the diffraction pattern analysis. For every OFR pulse, the
power of the pulse is monitored by a fast photodiode and
recorded with an oscilloscope to compensate for the power
instability.
A typical image and a column density of the obtained

diffraction pattern are shown in Figs. 1(c) and 1(d), re-
spectively. Each peak in the image represents the momen-

∆

Γ

∆

γ

µ

FIG. 1 (color online). (a) Schematic of the experimental setup.
A 174Yb condensate is irradiated with the standing wave formed
by an OFR laser. The diffraction pattern in the TOF image is
observed. (b) Energy diagram of the relevant states for the
experiment. The 1S0-

3P1 photoassociation transitions to the
vibrational states v0 ¼ 11, 12, and 13 are used for the OFR.
(c) Typical diffraction pattern obtained in the experiment. Each
peak in the image represents different momentum components
imparted by the pulsed lattice. (d) An integrated column density
of the image where the red dots and a blue line correspond to the
data and the fitted line for the determination of &, respectively.

PRL 105, 050405 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
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050405-2

Submicron spatial modulation of an interatomic interaction in a Bose-
Einstein condensate, PRL, 105, 050405 (2010) Kyoto group 
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How               modulates in space?
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Any other physics effects? 
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[
!2

2m
ϕ∗∇2ϕ +

4π!2

m
aloc(x)n2(x)

]
(4)

lim
r→0

ψ(r, x) =
1

r
− 1

aloc(x)
(5)

Kaeff # 1 (6)

H = − !2

4m
∇2

R −
!2

m
∇2

r + v(r) (7)

v(r) =



 −V0 !Ω

!Ω −Vc



 (8)

v(r) =



 −V0 !Ω(R)

!Ω(R) −Vc



 (9)

as = abg

(
1− Ω2

Ω2 − Ω2
0

)
(10)

2

E = sin(Kx) (1)

V (r1, r2) = V (r1 − r2) (2)

V (r1, r2) = V

(
r1 − r2,

r1 + r2

2

)
(3)

E =

∫
dx

[
!2

2m
ϕ∗∇2ϕ +

4π!2

m
aloc(x)n2(x)

]
(4)

lim
r→0

ψ(r, x) =
1

r
− 1

aloc(x)
(5)

Kaeff # 1 (6)

H = − !2

4m
∇2

R −
!2

m
∇2

r + v(r) (7)

v(r) =



 −V0 !Ω

!Ω −Vc



 (8)

v(r) =



 −V0 !Ω(R)

!Ω(R) −Vc



 (9)

as = abg

(
1− Ω2

Ω2 − Ω2
0

)
(10)

Ω(R) = Ω cos(Kx) (11)

as(x) = abg

(
1− Ω2 cos2(Kx)

Ω2 cos2(Kx)− Ω2
0

)
(12)

2

What we have done:
Solve two-body problem of this Hamiltonian

Qi Ran and HZ, arXiv: 1101.4464 
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Results II: Scattering Resonances
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FIG. 4: The effective scattering length defined as Eq. (12)
aeff/|abg| as a function of Ω/Ω0. (b) and (c) are enlarged plot
around Ω/Ω0 = 2.64 (b), 9.20 (c). The arrows indicate the
positions at which we plot the local scattering length aloc in
Fig. 5(a-d).

U−2 U−1 U0 U1 U2

1st 0 + 0 + 0

2nd + 0 + 0 +

3rd + 0 0 0 −
4th 0 + 0 − 0

TABLE I: Symmetry of Bloch wave function for the first four
bound states

Results 2 – Effective Scattering Length: For the scat-
tering state wave function, at large r only the first term
in Eq. (10) will not exponentially decay, and the asymp-
totic behavior of the scattering wave function is still the
same as that in the uniform case. Hence we can introduce
an effective scattering length as

aeff = lim
k→0

tan δ(k)
k

. (12)

Note that though the interaction is spatially dependent,
the effective scattering length defined as Eq. (12) is a
spatial independent one. Among the first four bound
states, aeff only diverges when the second bound state
appears at threshold, as one can see by comparing Fig.
4(a) with Fig. 2. This is because the divergence of aeff

implies the first term in Eq. (10) goes like 1/r, which
should be smoothly connected to a zero-energy bound
state with non-zero U0. Therefore, for the other three
bound states whose U0 = 0, their coupling to the low-
energy scattering states vanish and will not cause diver-
gency of aeff. In Fig. 4(c) we show that aeff diverges
when the sixth bound state (whose U0 != 0) appears at
scattering threshold, but the width of resonance becomes
narrower compared to Fig. 4(b) because this bound state
comes from higher band and its coupling to low-energy
scattering state ( i.e. the absolute value of U0) is smaller.

Results 3 – Local Scattering Length: At short distance
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FIG. 5: The local scattering length aloc as a function of posi-
tion x/a for Ω/Ω0 = 0.71, 2.55, 2.64 and 2.7 (a-d). The solid
blue line is calculated results, the black dashed line is the fit-
ting formula Eq(17) or (18), and the green dash-dotted line
in (a) is from simple replacement formula Eq. (15).

the wave function Eq. (10) satisfies the Bethe-Peierls
contact condition and display 1/r − 1/aloc(x) behavior,
hence we can introduce a local scattering length as

aloc(x) = − lim
r→r0

rψo(x, r)
∂r(rψo(x, r))

(13)

Unlike in the uniform case, aeff and aloc are different.
Similar situation has also been encountered for scatter-
ing in confined geometry [3], lattices [8] and mixed di-
mension [9]. What is unique here is that aloc is spatially
dependent. Naively, one may think that aloc(x) can be
obtained by replacing Ω in Eq. (4) by local Ω(x), i.e.

aloc(x) = abg

(
1− βΩ2 cos2(Kx)

εc + βΩ2 cos2(Kx)

)
(14)

≈ abg

[
1− βΩ2 cos2(Kx)/εc

]
(15)

where the second line is valid for small Ω. This formula
in fact corresponds to an oversimplified approximation
in our model that the kinetic energy term of the center-
of-mass motion (−!2∇2

R/(4m)) is completely ignored in
Eq. (1). In fact, what we really obtained from the wave
function Eq. (10) is

aloc(x) =
1−

∑
m"=0 Um cos(mKx)/U0

a−1
eff −

∑
m"=0 Um|m|K cos(mKx)/(2U0)

≈ 1− 2U2 cos(2Kx)/U0

a−1
eff − 2U2K cos(2Kx)/U0

(16)

The second line is also valid when Ω is not too large, so
the coefficient Um>2 is small enough that can be ignored.

Away from a resonance, Kaeff % 1, Eq. (16) can be
well approximated as

aloc(x) = aeff

[
1− 2U2

U0
cos(2Kx)

]
(17)
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Results III: Local Scattering Length 
--- related to local interaction energy
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FIG. 4: The effective scattering length defined as Eq. (12)
aeff/|abg| as a function of Ω/Ω0. (b) and (c) are enlarged plot
around Ω/Ω0 = 2.64 (b), 9.20 (c). The arrows indicate the
positions at which we plot the local scattering length aloc in
Fig. 5(a-d).

U−2 U−1 U0 U1 U2

1st 0 + 0 + 0

2nd + 0 + 0 +

3rd + 0 0 0 −
4th 0 + 0 − 0

TABLE I: Symmetry of Bloch wave function for the first four
bound states

Results 2 – Effective Scattering Length: For the scat-
tering state wave function, at large r only the first term
in Eq. (10) will not exponentially decay, and the asymp-
totic behavior of the scattering wave function is still the
same as that in the uniform case. Hence we can introduce
an effective scattering length as

aeff = lim
k→0

tan δ(k)
k

. (12)

Note that though the interaction is spatially dependent,
the effective scattering length defined as Eq. (12) is a
spatial independent one. Among the first four bound
states, aeff only diverges when the second bound state
appears at threshold, as one can see by comparing Fig.
4(a) with Fig. 2. This is because the divergence of aeff

implies the first term in Eq. (10) goes like 1/r, which
should be smoothly connected to a zero-energy bound
state with non-zero U0. Therefore, for the other three
bound states whose U0 = 0, their coupling to the low-
energy scattering states vanish and will not cause diver-
gency of aeff. In Fig. 4(c) we show that aeff diverges
when the sixth bound state (whose U0 != 0) appears at
scattering threshold, but the width of resonance becomes
narrower compared to Fig. 4(b) because this bound state
comes from higher band and its coupling to low-energy
scattering state ( i.e. the absolute value of U0) is smaller.

Results 3 – Local Scattering Length: At short distance
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FIG. 5: The local scattering length aloc as a function of posi-
tion x/a for Ω/Ω0 = 0.71, 2.55, 2.64 and 2.7 (a-d). The solid
blue line is calculated results, the black dashed line is the fit-
ting formula Eq(17) or (18), and the green dash-dotted line
in (a) is from simple replacement formula Eq. (15).

the wave function Eq. (10) satisfies the Bethe-Peierls
contact condition and display 1/r − 1/aloc(x) behavior,
hence we can introduce a local scattering length as

aloc(x) = − lim
r→r0

rψo(x, r)
∂r(rψo(x, r))

(13)

Unlike in the uniform case, aeff and aloc are different.
Similar situation has also been encountered for scatter-
ing in confined geometry [3], lattices [8] and mixed di-
mension [9]. What is unique here is that aloc is spatially
dependent. Naively, one may think that aloc(x) can be
obtained by replacing Ω in Eq. (4) by local Ω(x), i.e.

aloc(x) = abg

(
1− βΩ2 cos2(Kx)

εc + βΩ2 cos2(Kx)

)
(14)

≈ abg

[
1− βΩ2 cos2(Kx)/εc

]
(15)

where the second line is valid for small Ω. This formula
in fact corresponds to an oversimplified approximation
in our model that the kinetic energy term of the center-
of-mass motion (−!2∇2

R/(4m)) is completely ignored in
Eq. (1). In fact, what we really obtained from the wave
function Eq. (10) is

aloc(x) =
1−

∑
m"=0 Um cos(mKx)/U0

a−1
eff −

∑
m"=0 Um|m|K cos(mKx)/(2U0)

≈ 1− 2U2 cos(2Kx)/U0

a−1
eff − 2U2K cos(2Kx)/U0

(16)

The second line is also valid when Ω is not too large, so
the coefficient Um>2 is small enough that can be ignored.

Away from a resonance, Kaeff % 1, Eq. (16) can be
well approximated as

aloc(x) = aeff

[
1− 2U2

U0
cos(2Kx)

]
(17)

Bethe-Peierls condition:

E = sin(Kx) (1)

V (r1, r2) = V (r1 − r2) (2)

V (r1, r2) = V

(
r1 − r2,

r1 + r2

2

)
(3)

E =

∫
dx

[
!2

2m
ϕ∗∇2ϕ +

4π!2

m
aloc(x)n2(x)

]
(4)

lim
r→0

ψ(r, x) =
1

r
− 1

aloc(x)
(5)

2

Local scattering length

The mean-field energy for a BEC: 

E = sin(Kx) (1)

V (r1, r2) = V (r1 − r2) (2)

V (r1, r2) = V

(
r1 − r2,

r1 + r2

2

)
(3)

E =

∫
dx

[
− !2

2m
ϕ∗∇2ϕ +

4π!2

m
aloc(x)n2(x)

]
(4)

lim
r→0

ψ(r, x) =
1

r
− 1

aloc(x)
(5)

Kaeff # 1 (6)

2



Results III: Local Scattering Length 
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FIG. 4: The effective scattering length defined as Eq. (12)
aeff/|abg| as a function of Ω/Ω0. (b) and (c) are enlarged plot
around Ω/Ω0 = 2.64 (b), 9.20 (c). The arrows indicate the
positions at which we plot the local scattering length aloc in
Fig. 5(a-d).

U−2 U−1 U0 U1 U2

1st 0 + 0 + 0

2nd + 0 + 0 +

3rd + 0 0 0 −
4th 0 + 0 − 0

TABLE I: Symmetry of Bloch wave function for the first four
bound states

Results 2 – Effective Scattering Length: For the scat-
tering state wave function, at large r only the first term
in Eq. (10) will not exponentially decay, and the asymp-
totic behavior of the scattering wave function is still the
same as that in the uniform case. Hence we can introduce
an effective scattering length as

aeff = lim
k→0

tan δ(k)
k

. (12)

Note that though the interaction is spatially dependent,
the effective scattering length defined as Eq. (12) is a
spatial independent one. Among the first four bound
states, aeff only diverges when the second bound state
appears at threshold, as one can see by comparing Fig.
4(a) with Fig. 2. This is because the divergence of aeff

implies the first term in Eq. (10) goes like 1/r, which
should be smoothly connected to a zero-energy bound
state with non-zero U0. Therefore, for the other three
bound states whose U0 = 0, their coupling to the low-
energy scattering states vanish and will not cause diver-
gency of aeff. In Fig. 4(c) we show that aeff diverges
when the sixth bound state (whose U0 != 0) appears at
scattering threshold, but the width of resonance becomes
narrower compared to Fig. 4(b) because this bound state
comes from higher band and its coupling to low-energy
scattering state ( i.e. the absolute value of U0) is smaller.

Results 3 – Local Scattering Length: At short distance
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FIG. 5: The local scattering length aloc as a function of posi-
tion x/a for Ω/Ω0 = 0.71, 2.55, 2.64 and 2.7 (a-d). The solid
blue line is calculated results, the black dashed line is the fit-
ting formula Eq(17) or (18), and the green dash-dotted line
in (a) is from simple replacement formula Eq. (15).

the wave function Eq. (10) satisfies the Bethe-Peierls
contact condition and display 1/r − 1/aloc(x) behavior,
hence we can introduce a local scattering length as

aloc(x) = − lim
r→r0

rψo(x, r)
∂r(rψo(x, r))

(13)

Unlike in the uniform case, aeff and aloc are different.
Similar situation has also been encountered for scatter-
ing in confined geometry [3], lattices [8] and mixed di-
mension [9]. What is unique here is that aloc is spatially
dependent. Naively, one may think that aloc(x) can be
obtained by replacing Ω in Eq. (4) by local Ω(x), i.e.

aloc(x) = abg

(
1− βΩ2 cos2(Kx)

εc + βΩ2 cos2(Kx)

)
(14)

≈ abg

[
1− βΩ2 cos2(Kx)/εc

]
(15)

where the second line is valid for small Ω. This formula
in fact corresponds to an oversimplified approximation
in our model that the kinetic energy term of the center-
of-mass motion (−!2∇2

R/(4m)) is completely ignored in
Eq. (1). In fact, what we really obtained from the wave
function Eq. (10) is

aloc(x) =
1−

∑
m"=0 Um cos(mKx)/U0

a−1
eff −

∑
m"=0 Um|m|K cos(mKx)/(2U0)

≈ 1− 2U2 cos(2Kx)/U0

a−1
eff − 2U2K cos(2Kx)/U0

(16)

The second line is also valid when Ω is not too large, so
the coefficient Um>2 is small enough that can be ignored.

Away from a resonance, Kaeff % 1, Eq. (16) can be
well approximated as

aloc(x) = aeff

[
1− 2U2

U0
cos(2Kx)

]
(17)

Exact 
formula:

Simplified 
formula
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FIG. 4: The effective scattering length defined as Eq. (12)
aeff/|abg| as a function of Ω/Ω0. (b) and (c) are enlarged plot
around Ω/Ω0 = 2.64 (b), 9.20 (c). The arrows indicate the
positions at which we plot the local scattering length aloc in
Fig. 5(a-d).

U−2 U−1 U0 U1 U2

1st 0 + 0 + 0

2nd + 0 + 0 +

3rd + 0 0 0 −
4th 0 + 0 − 0

TABLE I: Symmetry of Bloch wave function for the first four
bound states

Results 2 – Effective Scattering Length: For the scat-
tering state wave function, at large r only the first term
in Eq. (10) will not exponentially decay, and the asymp-
totic behavior of the scattering wave function is still the
same as that in the uniform case. Hence we can introduce
an effective scattering length as

aeff = lim
k→0

tan δ(k)
k

. (12)

Note that though the interaction is spatially dependent,
the effective scattering length defined as Eq. (12) is a
spatial independent one. Among the first four bound
states, aeff only diverges when the second bound state
appears at threshold, as one can see by comparing Fig.
4(a) with Fig. 2. This is because the divergence of aeff

implies the first term in Eq. (10) goes like 1/r, which
should be smoothly connected to a zero-energy bound
state with non-zero U0. Therefore, for the other three
bound states whose U0 = 0, their coupling to the low-
energy scattering states vanish and will not cause diver-
gency of aeff. In Fig. 4(c) we show that aeff diverges
when the sixth bound state (whose U0 != 0) appears at
scattering threshold, but the width of resonance becomes
narrower compared to Fig. 4(b) because this bound state
comes from higher band and its coupling to low-energy
scattering state ( i.e. the absolute value of U0) is smaller.

Results 3 – Local Scattering Length: At short distance
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FIG. 5: The local scattering length aloc as a function of posi-
tion x/a for Ω/Ω0 = 0.71, 2.55, 2.64 and 2.7 (a-d). The solid
blue line is calculated results, the black dashed line is the fit-
ting formula Eq(17) or (18), and the green dash-dotted line
in (a) is from simple replacement formula Eq. (15).

the wave function Eq. (10) satisfies the Bethe-Peierls
contact condition and display 1/r − 1/aloc(x) behavior,
hence we can introduce a local scattering length as

aloc(x) = − lim
r→r0

rψo(x, r)
∂r(rψo(x, r))

(13)

Unlike in the uniform case, aeff and aloc are different.
Similar situation has also been encountered for scatter-
ing in confined geometry [3], lattices [8] and mixed di-
mension [9]. What is unique here is that aloc is spatially
dependent. Naively, one may think that aloc(x) can be
obtained by replacing Ω in Eq. (4) by local Ω(x), i.e.

aloc(x) = abg

(
1− βΩ2 cos2(Kx)

εc + βΩ2 cos2(Kx)

)
(14)

≈ abg

[
1− βΩ2 cos2(Kx)/εc

]
(15)

where the second line is valid for small Ω. This formula
in fact corresponds to an oversimplified approximation
in our model that the kinetic energy term of the center-
of-mass motion (−!2∇2

R/(4m)) is completely ignored in
Eq. (1). In fact, what we really obtained from the wave
function Eq. (10) is

aloc(x) =
1−

∑
m"=0 Um cos(mKx)/U0

a−1
eff −

∑
m"=0 Um|m|K cos(mKx)/(2U0)

≈ 1− 2U2 cos(2Kx)/U0

a−1
eff − 2U2K cos(2Kx)/U0

(16)

The second line is also valid when Ω is not too large, so
the coefficient Um>2 is small enough that can be ignored.

Away from a resonance, Kaeff % 1, Eq. (16) can be
well approximated as

aloc(x) = aeff

[
1− 2U2

U0
cos(2Kx)

]
(17)
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FIG. 4: The effective scattering length defined as Eq. (12)
aeff/|abg| as a function of Ω/Ω0. (b) and (c) are enlarged plot
around Ω/Ω0 = 2.64 (b), 9.20 (c). The arrows indicate the
positions at which we plot the local scattering length aloc in
Fig. 5(a-d).

U−2 U−1 U0 U1 U2

1st 0 + 0 + 0

2nd + 0 + 0 +

3rd + 0 0 0 −
4th 0 + 0 − 0

TABLE I: Symmetry of Bloch wave function for the first four
bound states

Results 2 – Effective Scattering Length: For the scat-
tering state wave function, at large r only the first term
in Eq. (10) will not exponentially decay, and the asymp-
totic behavior of the scattering wave function is still the
same as that in the uniform case. Hence we can introduce
an effective scattering length as

aeff = lim
k→0

tan δ(k)
k

. (12)

Note that though the interaction is spatially dependent,
the effective scattering length defined as Eq. (12) is a
spatial independent one. Among the first four bound
states, aeff only diverges when the second bound state
appears at threshold, as one can see by comparing Fig.
4(a) with Fig. 2. This is because the divergence of aeff

implies the first term in Eq. (10) goes like 1/r, which
should be smoothly connected to a zero-energy bound
state with non-zero U0. Therefore, for the other three
bound states whose U0 = 0, their coupling to the low-
energy scattering states vanish and will not cause diver-
gency of aeff. In Fig. 4(c) we show that aeff diverges
when the sixth bound state (whose U0 != 0) appears at
scattering threshold, but the width of resonance becomes
narrower compared to Fig. 4(b) because this bound state
comes from higher band and its coupling to low-energy
scattering state ( i.e. the absolute value of U0) is smaller.

Results 3 – Local Scattering Length: At short distance
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FIG. 5: The local scattering length aloc as a function of posi-
tion x/a for Ω/Ω0 = 0.71, 2.55, 2.64 and 2.7 (a-d). The solid
blue line is calculated results, the black dashed line is the fit-
ting formula Eq(17) or (18), and the green dash-dotted line
in (a) is from simple replacement formula Eq. (15).

the wave function Eq. (10) satisfies the Bethe-Peierls
contact condition and display 1/r − 1/aloc(x) behavior,
hence we can introduce a local scattering length as

aloc(x) = − lim
r→r0

rψo(x, r)
∂r(rψo(x, r))

(13)

Unlike in the uniform case, aeff and aloc are different.
Similar situation has also been encountered for scatter-
ing in confined geometry [3], lattices [8] and mixed di-
mension [9]. What is unique here is that aloc is spatially
dependent. Naively, one may think that aloc(x) can be
obtained by replacing Ω in Eq. (4) by local Ω(x), i.e.

aloc(x) = abg

(
1− βΩ2 cos2(Kx)

εc + βΩ2 cos2(Kx)

)
(14)

≈ abg

[
1− βΩ2 cos2(Kx)/εc

]
(15)

where the second line is valid for small Ω. This formula
in fact corresponds to an oversimplified approximation
in our model that the kinetic energy term of the center-
of-mass motion (−!2∇2

R/(4m)) is completely ignored in
Eq. (1). In fact, what we really obtained from the wave
function Eq. (10) is

aloc(x) =
1−

∑
m"=0 Um cos(mKx)/U0

a−1
eff −

∑
m"=0 Um|m|K cos(mKx)/(2U0)

≈ 1− 2U2 cos(2Kx)/U0

a−1
eff − 2U2K cos(2Kx)/U0

(16)

The second line is also valid when Ω is not too large, so
the coefficient Um>2 is small enough that can be ignored.

Away from a resonance, Kaeff % 1, Eq. (16) can be
well approximated as

aloc(x) = aeff

[
1− 2U2

U0
cos(2Kx)

]
(17)

4

In fact, we show in Fig. 5(a), (b) and (d) that the for-
mula Eq. (17) (dashed black line) is a very good approx-
imation to the actual results (solid blue line). In Fig.
5(a) we show the simple replacement formula Eq. (14)
already significantly deviates from the actual results in
weak coupling regime. From Fig. 5(b) and (d) one can
also see that the mean value of aloc(x) changes sign as
aeff changes sign. At resonance, a−1

eff → 0, Eq. (16) can
be approximated as

aloc(x) =
1
K

[
1− U0

2U2 cos(2Kx)

]
(18)

We show in Fig. 5(c) that Eq. (18) is also a very good ap-
proximation to actual aloc at resonance. Hence, we show
that aloc behaves very differently in the regime nearby or
away from a scattering resonance.

Implications to Many-body Physics: In summary, we
have revealed a number of novel features in the two-body
problem with a spatially modulated interaction potential,
which have strong implications for many-body physics
and provide new insights for developing new tools for
quantum control in cold atom systems.

First, when aeff diverges, the system enters a strongly
interacting regime and is expected to exhibit univer-
sal behavior, which can even be manifested in the high
temperature regime [10]. For a two-component Fermi
gas, it provides a new route toward BEC-BCS crossover
physics, and “high-temperature” superfluid may exist in
this regime. The periodic structure will add new ingre-
dient to the crossover physics.

Secondly, for the low-energy states whose energy |E|#
ER, the energy dependence of scattering length can be
ignored and the many-body system can be effectively de-
scribed by a pseudo-potential model:

Ĥ = −
∑

i

!2∇2
ri

2m
+

∑

ij

4π!2aloc(Rij)
m

δ3(rij)
∂

∂rij
rij ,

(19)
where Rij = (ri + rj)/2 and rij = ri − rj . It is very
important that aloc(R) in the pseudo-potential of Eq.
(19) is given by Eq. (16) from the two-body calculation,
so that a two-body problem of the Hamiltonian Eq. (19)
can produce correct low-energy eigen-wave function and
the effective scattering length as from model potential.

For bosons, with a mean-field approximation, Eq. (19)
implies that the interaction energy should take the form

Emf =
4π!2

m

∫
aloc(x)n2(x)dx (20)

which leads to a modulation of condensate density n(x)
and self-trapping nearby the minimum of aloc(x). It is
very likely a strong enough modulation of condensate
density will eventually result in the loss of superfluid-
ity and the system enters an insulating phase. If so, it
provides a completely different mechanism for superfluid

to insulator transition where the transition is not driven
by suppression of kinetic energy as in conventional OL.

Final Comments: In this work we choose a coupled two
square-well model whose advantage is that the physics
can be demonstrated in a simple and transparent way.
However, some more sophisticated effects in real system,
such as the inelastic loss, are ignored. We have also im-
plemented more systematic scattering theory which in-
cludes these effects and found that the physics discussed
here will remain qualitatively unchanged. These results
will be published elsewhere [11].

Moreover, the formalism used in this work can be eas-
ily generalized to other realizations of spatial modula-
tion of interactions. For instance, in a magnetic FR, one
can consider the presence of a magnetic field gradient so
that the closed channel molecular energy varies spatially.
This effect is particularly important for a narrow reso-
nance. One can also optically couple the closed channel
molecule to another molecular state via a bound-bound
transition, which leads to a periodic variation of molecule
energy [12]. Similar effects as discussed in Results 1-3
also present in these cases [11].
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E = sin(Kx) (1)

V (r1, r2) = V (r1 − r2) (2)

V (r1, r2) = V

(
r1 − r2,

r1 + r2

2

)
(3)

E =

∫
dx

[
!2

2m
ϕ∗∇2ϕ +

4π!2

m
aloc(x)n2(x)

]
(4)

lim
r→0

ψ(r, x) =
1

r
− 1

aloc(x)
(5)

Kaeff # 1 (6)
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Results III: Local Scattering Length 
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Summary:
Take Home Message

New Mechanism New System New Features

Two-body interaction 
potential has center-
of-mass dependence  

Alkali-earth-(like) 
atomic gases: Sr, 
Ca, Yb

Spatially dependent 
local scattering 
length




