Lecture Notes on Quantum Mechanics - Part 1

Yunbo Zhang
Institute of Theoretical Physics, Shanzi University

This is the first part of my lecture notes. I mainly introduce some basic concepts and fundamental

axioms in quantum theory. One should know what we are going to do with Quantum Mechanics -
solving the Schrodinger Equation.
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The emergence and development of quantum mechanics began in early years of the previous century and accom-
plished at the end of the twentieth years of the same century. We will not trace the historical steps since it is a long

story. Here we try to access the theory by a way that seems to be more "natural” and more easily conceivable.



A. de Broglie’s hypothesis

Inspiration: Parallelism between light and matter

Wave: frequency v,w, wavelength A\, wave vector k------

Particle: velocity v, momentum p, energy €---- - -

e Light is traditionally considered to be a typical case of wave. Yet, it also shows (possesses) a corpuscle nature -
light photon. For monochromatic light wave

e=hv=hw

hv h s
= — = —=hk k= —
p=o =y (k=1

e Matter particles should also possess another side of nature - the wave nature

e=hv=hw
h

= —=hk
P=X

This is call de Broglie’s Hypothesis and is verified by all experiments. In the case of non-relativistic theory, the de
Broglie wavelength for a free particle with mass m and energy ¢ is given by

A=h/p=h/V2me
The state of (micro)-particle should be described by a wave function. Here are some examples of state functions:

1. Free particle of definite momentum and energy is described by a monochromatic traveling wave of definite wave
vector and frequency

2
Y = A’ cos (;aﬁ — 2Tvt + gpo>
= A’ cos (kx — wt + ¢o)
1 1
= A’ cos (hpx — ﬁst + cpo)

Replenish an imaginary part

1 1
by = A’ sin (hpx — ﬁet + <po> ,

we get the final form of wave function
=1y + ithy = AleP0erPTeT R = AenPTe  REt
which is the wave picture of motion of a free particle. In 3D we have
) = AenP e et

2. Hydrogen atom in the ground state will be shown later to be
1\ /2 _
riy= (L) e imn
o= () e

This wave function shows that the motion of electron is in a "standing wave” state. This is the wave picture of
above state.
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FIG. 1: Maupertuis’ Principle.

B. Stationary Schrédinger equation

The parallelism between light and matter can go further

Light: wave nature omitted geometric optics
wave nature can not be omitted wave optics
Matter: wave nature omitted particle dynamics

a new mechanics,
namely quantum mechanics
| Particle Dynamics |<=-[Geometric Optics|

wave nature can not be omitted

’Quantum Mechanics‘é’ Wave Optics ‘

Here we make comparison between light propagation of monochromatic light wave and wave propagation of
monochromatic matter wave

Light wave || geometric optics Fermat’s principle
wave propagation| Helmholtz equation
Matter wave ||particle dynamics|Principle of least action

wave propagation| Presently unknown

Now consider light wave propagation in a non-homogeneous medium

B
light path :/ n(r)ds
A

Fermat’s principle

(5/ABn(F)ds:0

For a particle moving in a potential field V(7), the principle of least action reads

5/B\/2des = 5/3 V2m(E =V (7)ds =0
A A

The corresponding light wave equation (Helmholtz equation) is

1 92 S
<V2 - 628t2> U(T,t) =0



which after the separation of variables reduces to

n2w?

V2 + ¥ =0.

c2

Here we note that w is a constant. Thus we arrived at a result of comparison as follows

’6ff V2m(E -V (7))ds = 0‘<:>’ 5ffn(f’)ds =0 ‘
g 4
’ Presently unknown \é]v% + "i‘;g = O‘
U
Presumed to be of the form
V2 4+ AnYp =0

Here A is an unknown constant, and the expression v/2mT plays the role of ”index of refraction” for the propagation
of matter waves. The unknown equation now can be written as

V2 + A2m(E = V(7)) ¢ =0

Substitute the known free particle solution

I
1
E=_—3
Qmp
V(F)=0

into the above equation. We find the unknown constant A equals to 1/h%, therefore we have
9 2m
\% %/J“‘ﬁ[E_V(F)Mﬁ:O
for the general case. It is often written in a form

VRV () () = B (7

and bears the name ”Stationary Schrédinger Equation”

C. Conclusion

By a way of comparison, we obtained the equation of motion for a particle with definite energy moving in an
external potential field V' (7) - the Stationary Schrédinger Equation. From the procedure we stated above, here we
stressed on the "wave propagation” side of the motion of micro-particle. v2mT = \/2m(E — V (7)) is treated as
"refraction index” of matter waves.

It may happen for many cases that in some spatial districts E is less than V (7), i.e., E < V (). What will happen
in such cases?

e Classical mechanics: particles with total energy E can not arrive at places with E < V (7).

e Matter waves (Q.M.): matter wave can propagate into districts E < V (¥), but in that cases, the refraction
index becomes imaginary.

About Imaginary refraction indez: For light propagation, imaginary refraction index means dissipation, light wave
will be attenuated in its course of propagation. For matter waves, no meaning of dissipation, but matter wave will be
attenuated in its course of propagation.



Double Slit

FIG. 2: Double slit experiments.

II. STATISTICAL INTERPRETATION OF WAVE MECHANICS

People tried hard to confirm the wave nature of micro-particles, and electron waves were first demonstrated by
measuring diffraction from crystals in an experiment by Davison and Germer in 1925. They scattered electrons off
a Nickel crystal which is the first experiment to show matter waves 3 years after de Broglie made his hypothesis.
Series of other experiments provided more evidences, such as the double slit experiments using different particle
beams: photons, electrons, neutrons, etc. and X-ray (a type of electromagnetic radiation with wavelengths of around
10719 meters). Diffraction off polycrystalline material gives concentric rings instead of spots when scattered off single
crystal.

Wave function is a complex function of its variables

(e, t) = Ach PP

1 i
U (r,0,6,t) = ——e P B

Tay

1. Dynamical equation governing the motion of micro-particle is by itself a equation containing imaginary number

2. The wave function describing the state of micro-particle must fit the general theory frame of quantum theory
(operator formalism) - requirement of homogeneity of space. This means, the symmetry under a translation in
space r — r + a, where a is a constant vector, is applicable in all isolated systems. Every region of space is
equivalent to every other, or physical phenomena must be reproducible from one location to another.

A. Pose of the problem

What kind of wave it is?

e Optics: Electromagnetic wave
wave propagating

N i(z—"m727n/t) 5 i(kz—wt)
E(z,t) = goFEoe'\ > =1oko e

Ey — amplitude — field strength
Intensity Eg — energy density

e Acoustic wave

U(Qf, t) _ goeri(zTﬂ'a:—Zﬂ'Vt)



Electromagnetic waves transport

energy through empty space, stored

in the propagating electric and }u
magnetic fields.

Electric
field variation

Magnetic field |
variation is v

perpend_iau_lar Magnetic

to electric field. field variation

A single-frequency electromagnetic
wave exhibits a sinuscidal variation
of electric and magnetic fields in
space.

FIG. 3: Electromagnetic Wave Propagation.

Uy — amplitude — mechanical displacement

Intensity Ug — energy density

e Wave function
w(m,t) = Aei(szifmwt) —_ Ae%(pmet)

Scalar wave, Amplitude - A —7
Intensity - A% —?

Early attempt: Intensity — material density, particle mass distributed in wave. But wave is endless in space,
how can it fit the idea of a particle which is local.

B. Wave packet - a possible way out?

particle = wave packet - rain drop
e*fo% _ an endless train, How can it be connected with particle picture?

Two examples of localized wave packets

e Superposition of waves with wave number between (kg — Ak) and (ko + Ak) - square packet

A, kg — Ak <k <ky+ Ak
(k) = 0 ’
0, elsewhere

1 ikx
Vo) = o= / (k)™ d

1 ko+Ak
V2T Jig—Ak

_ 1 2Asm(Akx)
V2T x

Amplitude

ezkwdk

ezkox

Both wave number and spatial position have a spread - uncertainty relation
Az ~ 7/ Ak,
Ax- Ak~
Ax - Ap = 7h



Adding several waves of different wavelength
together will produce an interference
pattern which begins to localize the wave.

H—
| ?\avg

’<—ax4»

Eut that process spreads the wave number k
values and makes it more uncertain. This

iz aninherent and inescapable increase
inthe uncertainty Ak when A is

decteased. AkAx . 1

FIG. 4: Wave packet formed by plane waves with different frequency.

Plane wave: eilkex=¥s!

=

Wave packet: ko, and A

]

T T T 1

FIG. 5: Spread of a wave packet.

e Superposition of waves with wave number in a Gaussian packet

1/4
o) = (2] emethotor

™

Problem 1 The Fourier transformation of p(k) is also Gaussian. It is the best one can do to localize a particle in
position and momentum spaces at the same time. Find the root mean square (RMS) deviation Az - Ap =?

Problem: Wave packet is unstable - The waves have different phase velocity and the wave components of a wave
packet will disperse even in vacuum. But electrons are localized in the atom (1A). This viewpoint emphasize the
wave nature of micro-particle while killing its particle nature.

Another extreme viewpoint on wave particle duality is that wave is composed by large amount of particles (as waves
in air). However experiments show clearly a single electron possesses wave nature. This viewpoint over-stressed the
particle nature.

C. Born’s statistical interpretation

A particle by its nature is localized at a point, whereas the wave function is spread out in space. How can such
an object represent the state of a particle? The answer is provided by Born’s Statistical Interpretation of the wave
function, which says that in 1D case |[¢ (z,t)|” gives the probability of finding the particle at point z, at time ¢ - or,
more precisely

/b 0 (@ t)|2 dr — Probability of finding the particle
a ’ between a and b, at time t.
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FIG. 6: Histogram for the distribution.

In 3D case, the relative probability for the particle appearing in a volume element d37 is proportional to the intensity
of wave in that volume element

Probability amplitude
— 2 13- * [ = - 3 -
dw oc [ (7, 1) " d°F = ™ (7 1) P(rit) AT

Probability density

D. Probability

Because of the statistical interpretation, probability plays a central role quantum mechanics. So we introduce some
notation and terminology.

1. Exzample of discrete variables

14 people in a room. Let N(j) represent the number of people of age j.
N(14) =1,N(15) =1, N(16) = 3,N(22) =2,N(24) =2,N(25) =5 (1)
while N(17), for instance, is zero. The total number of people in the room is
N=> N(j
j=0
Questions about the distribution

1. If you selected one individual at random from this group, what is the probability that this person’s age would
be 157 Answer: One chance in 14, since there are 14 possible choices, all equally likely, of whom only one has
this particular age. In general the probability of getting age j is

Notice that the probability of getting either 14 or 15 is the sum of the individual probabilities (in this case,
1/7). In particular, the sum of all the probabilities is 1 - you're certain to get some age:

> PG =1

j=0

2. What is the most probable age? Answer: 25. In general the most probable j is the j for which P(j) is a
maximum.

3. What is the median age? Answer: 23, for 7 people are younger than 23, and 7 are older. In general, the
median is that value of j such that the probability of getting a larger result is the same as the probability of
getting a smaller result.
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FIG. 7: Two histogram with different o.

4. What is the average (or mean) age? Answer:

(14) + (15) +3(16) +2(22) +2(24) +5(25) _ 294 _
14 T 14

In general the average value of j (which we shall write thus: (j)) is

oo

iy =220 =3 i)

In quantum mechanics it is called the expectation value. Nevertheless the value is not necessarily the one you
can expect if you made a single measurement. In the above example, you will never get 21.

5. What is the average of the squares of the ages? Answer: You could get 142 = 196, with probability 1/14,
or 152 = 225, with probability 1/14, or 16% = 256, with probability 3/14, and so on. The average is

o0
(%) =D 3P0
§j=0
In general, the average value of some function of j is given by

(G =22 FPG)

j=0

Beware (j2) # ().

Now, there is a conspicuous difference between the following two histograms, even though they have the same
median, the same average, the same most probable value, and the same number of elements: The first is sharply
peaked about the average value, whereas the second is broad and flat. (The first might represent the age profile
for students in a big-city classroom, and the second, perhaps, a rural one-room schoolhouse.) We need a numerical
measure of the amount of ”spread” in a distribution, with respect to the average. The most effective way to do this
is compute a quantity known as the standard deviation of the distribution

o =/{(a)) =2 - G)?
Aj=37—1)
For the two distributions in the above figure, we have
o1 =+252-25 =02
oy =+/31.0 - 25 =6
2. Ezample of continuous variables

It is simple enough to generalize to continuous distribution. Technically we need ”infinitesimal intervals”. Thus

Probability that an individual (chosen — p(a)da
at random) lies between z and (z + dz)
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FIG. 8: The probability density in the Example p(x).

p(x) is the probability of getting z, or probability density. The probability that z lies between a and b (a finite
interval) is given by the integral of p(x)

b
Puy — / pl)da

and the rules we deduced for discrete distributions translate in the obvious way:

1= /+OO p(x)dx

—00

(x) = /+<>C xp(z)dz

—00

+oo
(f(@)) = / f(@)p()dz

o’ = <(Aw)2> = (2*) - (z)?

Example: Suppose I drop a rock off a cliff of height h. As it falls, I snap a million photographs, at random intervals.
On each picture I measure the distance the rock has fallen. Question: What is the average of all these distance? That
is to say, what is the time average of the distance traveled?

Solution: The rock starts out at rest, and picks up speed as it falls; it spends more time near the top, so the average
distance must be less than h/2. Ignoring air resistance, the distance z at time ¢ is

1
x(t) = 59152

The velocity is dz/dt = gt, and the total flight time is T = 1/2h/g. The probability that the camera flashes in the
interval dt is dt/T, so the probability that a given photograph shows a distance in the corresponding range dz is

dt. _dx [g 1

=—\/= = dz
T gtV2h 2Vhx

Evidently the probability density is

1
= (0<z<h
p@) = =0 <z <h)

ﬁ

(outside this range, of course, the probability density is zero.)
We can check the normalization of this result

h
1 1 h
——dr = —— (22Y%) =1
/0 2V ha 2vh ( >o
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The average distance is

(x)—/h;v ! dx——l (2x3/2>h—h/3
o 2Vhx 2vh \3 0

which is somewhat less than h/2, as anticipated. Figure shows the graph of p(z). Notice that a probability density
can be infinite, though probability itself (the integral of p) must of course be finite (indeed, less than or equal to 1).

Problem 2 Griffiths, page 12, Problem 1.2, 1.3

E. Normalization

We return now to the statistical interpretation of the wave function, which says that |¢(z, t)\2 is the probability
density for finding the particle at point z, at time ¢. It follows that the integral of [¢(x,¢)|” must be 1 (the particle’s
got to be somewhere)

+oo 5
[ waopd=1 @)

If ¥(x,t) is a solution of Schrédinger equation, so too are Ay (x,t) and e**)(x,t). Here A is any complex constant,
« is a phase factor of the wave function. What we must do, then, is pick this undetermined multiplicative factor so
as to ensure that Equation (2) is satisfied. This process is called normalizing the wave function. For some solutions
to the Schrodinger equation, the integral is infinite; in that case no multiplicative factor is going to make it 1. The
same goes for the trivial solution ¢ (x,t) = 0. Such non-normalizable solutions cannot represent particles, and must
be rejected. Physically realizable states correspond to the ”square-integrable” solutions to Schrédinger’s equation.

Ezxample: Problem 1.4 on page 14 of Griffiths.

At time t = 0, a particle is represented by the wave function

Az, if0<z<a
P(z,0) =4 AL ifa <z <b
0, otherwise
where A, a and b are constants.
(a) Normalize v (that is, find A, in terms of a and b).
(b) Sketch 1 (x,0) as a function of z.
(c) Where is the particle most likely to be found, at ¢ = 07
)

(d) What is the probability of finding the particle to the left of a? Check your result in the limiting cases b = a and
b= 2a.

(e) What is the expectation value of x?

Solution:

(a)
AP e APt
1:Q/ m2dm+¥/ (b—z)*dx
0 a

a’ (b—a)”

I B b-2?\"
=14 a2<3>0+(b—a)2<_ 3 )

b—a b
— 42 — 42?2

3
A=4/2
= b
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ll.i'

a b x

FIG. 9: Sketch of ¥(z,0) as a function of x.

—~

c) At z = a.

2
Al

p:/ W(x,o)Ide:Aﬁ/ Pdr=|ape =20 P=1ib=a v
0 a® Jo 3 b|P=1/2ifb=2a

Problem 3 Griffiths, page 14, Problem 1.5

III. MOMENTUM AND UNCERTAINTY RELATION

In classical mechanics, we learn that position and momentum are canonical variables to each other. In 1D case,
this can be seen from the Fourier transformation and its reverse

1
V2mh

1 too il
o(p,t) = \/ﬁ/ Y(z,t)e” nPrdx

1/’(17715) =

+oo i
/ o(p,t)erP dp
—o00

A. Expectation value of dynamical quantities

For a particle in state ¢(x), the expectation/mean/average value of x is

o0 9 o0
<x>=/ sl P de = | " (@8 20 (o) da

—00 —

What exactly does this mean? It emphatically does not mean that if you measure the position of one particle
over and over again, [z |w|2dx is the average of the results you’ll get. On the contrary, the first measurement
(whose outcome is indeterminate) will collapse the wave function to a spike at the value actually obtained, and
the subsequent measurements (if they’re performed quickly) will simply repeat that same result. Rather, (x) is the
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average of measurements performed on particles all in the state v, which means that either you must find some way of
returning the particle to its original state after each measurement, or else you prepare a whole ensemble of particles,
each in the same state 1, and measure the positions of all of them: (z) is the average of these results.

In short, the expectation value is the average of repeated measurements on an ensemble of identically prepared
systems, not the average of repeated measurements on one and the same system.

Similarly one can get the expectation value of the potential energy V()

+00 5 Foo
V() = / V) e tPde= [ ¢ @t) Vi) (o 0) do

oo _
But for the momentum p, this is not true

+o0

<p> # P* (%t)lﬂ(%t)pdl’

— 00
Instead, by means of the Fourier transformation of the wave function, ¢(p,t), we have
+oo —+oo
= [ e = [ o .0mel.0d

— 00 —0o0

+oo +oo 1 ;
= d, dx *(z,t) enP” ,t
/m p(oo %w ) >pso(p )

1 +oo
- dpdaa)* (x,t) emP"pp(p, t
\/ﬁ//m pdxap* (x,t) e po(p,t)
//mddw*( t>('hd)\ﬁ1 P (p, )
= x x, —ith— e ,
oo P dx orh PP

Collecting the underlined terms into ¢ (x,t), we have

W= [ e (-t ) v

— 0o

Definition: For 1D case, the momentum operator is defined as

d
5— _in L
P ! dx
and
+oo
(p) = V" (x,t) py (z,t) dz
+oo

+ * (2, t) ¢ (x,t) pdx

It is straightforward to generalize the Fourier transformation result to 3D case

¥ (r,t) = Wl)g/z77/s0(p7t)e%p‘”d3p

o(p,t) = (27#11)3/277/1/](1" t)e—%pmd?)r

The corresponding momentum operators are defined as
p = —ihV

with the components

0
p = —ihe py = —ih = —ih—
b oz Py ‘ oy b o
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For simplicity we introduce

W= [aroo= [arpuf

where dr means dx for 1D, dxdydz for 3D, and dx1dy1dz; - - - deydyndzy for N particles. The normalization takes a
very simple form

(¥, ¢) =1

The mean value of a dynamical quantity A is

() = 77/ v () A () dr = (9, A0)

If the wave function is not normalized we should compute it as

(1, )

Problem 4 Consider a particle in one dimensional system. Both the wave function ¥ (x,t) and its Fourier transfor-
mation p(p,t) can represent the state of the particle.

Y(x,t) is the wave function (or state function,
probability amplitude) in position representation
p(p,t) represents the same state in momentum
representation, just like a vector can be expressed

in different coordinate systems

If we use o(p,t) to represent the state, what are the operators x and p? p is just p itself, but what about x?

B. Examples of uncertainty relation

Let us examine again the example of Gaussian wave packets

1/4
(k) = <2a> e~ (k—ko)*,

™

It is localized in momentum about p = hky. We can check the normalization
+oo 2 +oo 9
/ (k) [ dk = ,/i‘/ em2alk—ko) g — [ 22 [T g
—00 T J_s T\ 2«
because

The Fourier transformation

The probability density in position space
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while in wave vector space

2 2 —2a(k— 2
()| = o2k

From the standard definition of Gaussian distribution

P(z) 1 _ <w—)g>2
xr) = —€ 20
V2mo?

we easily identify the standard deviation in x and k spaces, respectively

0z =Va=Azx
1
=—— = Ak
ok Vo

We thus have

Ax-Ak=1/2

Az - Ap="h/2
More strict calculations show that

Ax-Ap > h/2

which is Heisenberg’s Uncertainty Principle. So the Gaussian wave packets seem to saturate the bound! We need in
near future some constants to evaluate the experiments related quantities

leV = 1.602 x 10~ 2erg = 1.602 x 1071 Joule
he=1973¢V - A, ag=0.534,  me=051MeV/c?

and finally the fine structure constant a = €2 /he = 1/137.

IV. PRINCIPLE OF SUPERPOSITION OF STATES

Superposition is a common property of all kinds of linear waves. The most striking characters, the interference and
the diffraction, are results of superposition of waves. The distinction between wave motion and particle dynamics lies
on whether there exists superposition. The wave nature of micro-particle is recognized and confirmed just through
experimental observation of interference of matter waves. It is not surprised that the wave funtions (the states) obey
superposition principle.

A. Superposition of 2-states

Let 11 and 1, represent two different states of one micro-particle. The principle of superposition asserts that

Y = a1 + az)

is also a possible state of the micro-particle - the superposition state.

Here we show an interesting animation of the double slit experiment for bullets, water waves and electrons which
is from

hitp: //www.upscale.utoronto.ca/Generallnterest/Harrison/DoubleSlit /DoubleSlit. html

We summarize the main conclusions of the experiments.

1. The probability of an event in an ideal experiment is given by the square of the absolute value of a complex
number 1 which is called the probability amplitude
P = probability
1 = probability amplitude
P = [y’
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2. When an event can occur in several alternative ways, the probability amplitude for the event is the sum of the
probability amplitude for each way considered separately. There is interference:

Y =11+ P2
P = |¢1 + o

3. If an experiment is performed which is capable of determining whether one or another alternative is actually
taken, the probability of the event is the sum of the probabilities for each alternative. The interference is lost:

P=P +P

The more precisely you know through which slit the electron passes (particle nature), the more unlikely you will
see the interference pattern (wave nature). This is the manifestation of Heisenberg uncertainty principle.

B. Superposition of more than 2 states

We have in this case

Y =a1p1 +agpp oo = Zai%

where the coefficients a; determine the relative magnitudes and relative phases among the participating waves.

A special case, yet the most important one, is the superposition of monochromatic plane waves (with one-dimensional
case as example). The superposition of several monochromatic plane waves of different p generates a superposition
state

() = Cleiplw/h + Czeipzw/h T

Generalization: the value p of monochromatic plane wave e”?*/" changes continuously from —oo to 400, the coefficients
now are written as a function of p and denoted by ¢(p,t)

1 Fo0 .
o / (o, )™/ dyp

which is nothing but the Fourier transformation.

C. DMeasurement of state and probability amplitude
1. Measurement of state

The measurement of state is a rather subtle subject. Let us analyze it as follows:

1. There is a microscopic system in a particular state ¢ that is to be measured

2. Measurement means that we try to understand the state 1) by means of a process called measurement. This
measurement is certainly a macroscopic process and the measured quantity is some kind of physical quantities
such as position, momentum, energy, angular momentum, etc.

3. It can be anticipated that the measurement results will be a statistical one.

We will discuss here only measurement of two basic physical quantities, the coordinate = and the momentum p.
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FIG. 10: Bragg diffraction element: Different momentum components are diffracted into different directions.

\

FIG. 11: Scattering of waves by crystal planes.

2. Measurement of coordinate

To simplify the discussion, we restrict our discussion to one-dimensional case. In fact, this is just the Born’s
statistical interpretation. The probability for the measuring result to be between = and = + dz is

P(2)dz = 4" (@)i(z)da

The generalization to 3D case is straightforward. The probability for the measuring result to be between (z,y, z) and
(v 4+ dz,y + dy, z + dz) is *(r)(r)d>r.

A new light for comprehending wave function:

Intensity of matter wave described by |z/1|2 at certain point r is the probability density of finding particle there

Amplitude of the matter wave (probability wave) described by ¥(r,t) at certain point r is the probability amplitude
of finding the particle there.

8. Measurement of momentum

In this case, we consider the case that the state 1 (z) is a superposition of monochromatic waves of different but
discrete p values

Y(z) = Cleiplfb/h 4 CQGiP21/h ......

The apparatus is an idealized equipment that can analyze momenta exactly and diffracted them in different directions,
e.g., an idealized Bragg diffraction element described by Bragg formula

nA = 2dsinf
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The probability for the outcome of p is proportional to the intensity of the i—th component cfc; = |ci|2. Generalizing
to arbitrary 1D state with continuous p values we have

Y(x,t) = \/%/w(pvt)e%’“dp

where ¢(p, t) plays the role of coefficients ¢; in the case of continuous p. Hence the probability of finding the particle
to have its momentum between p and p + dp

P(p)dp = " (p, t)(p,t)dp = |p(p,t)|* dp

P(r,t) = Wl)g,/g///w(p,t)e;“d?’p

and the probability for the particle to have its momentum between (ps, py,p-) and (pg + dps, py + dpy, p> + dp;) is
P(p)d°p = ¢"(p,t)¢(p, t)dpsdpydp-

This can be visualized in momentum space as the probability of p vector to have its endpoint in volume element d>p.
Note:

Further generalization to 3D case

e Once the wave function ¥(r,t) is known, ¢(p,t) is uniquely defined though Fourier transformation. Thus, the
probability distribution of p is known.

e (r,t) and ¢(p,t) have the same function in representing a state in this sense, i.e., there is no priority of
Y(r, t) over (p,t), ¥(r,t) is called coordinate representation of the state, while p(p,t) is called the momentum
representation of the same state.

e Just as in coordinate representation, ¢(p,t) represents a probability wave and the numerical value of ¢(p,t) is
the probability amplitude at momentum p.

D. Expectation value of dynamical quantity

In 1D case we say that the operator x represents position, and the operator fih% represents momentum, in
quantum mechanics; to calculate expectation values, we sandwich the appropriate operator between ¥* and v, and
integrate

+oo
() = / dx (1) (2) 6 (2, )

—o0
+o0 bl
W)= [ aw ) (=gl ) vt
oo x
That’s cute, but what about other dynamical variables? The fact is, all such quantities can be written in terms of
position and momentum. Kinetic energy, for example, is

1 2
T=-m?=2"
2 2m
and the angular momentum is
L=rxp

(the latter, of course, does not occur for motion in one dimension). To calculate the expectation value of any such
quantity, @ (x, p), we simply replace every p by —ih%, insert the resulting operator between ¢* and v, and integrate

Q) - [

— 00

“+o0

dap* (2,t) Q (m —ihi) ¥ (2,1) (3)

Extension to 3D case is straightforward.

There are two cornerstones of Quantum Mechanics: The state of motion is described by wave functions while
dynamical quantities are represented as operators. They cooperate each other into a complete theory. Thus all
physical quantities must be operatorized. The consequences of operatorization of physical quantities have profound
significance in quantum theory. We also notice the importance of cartesian coordinate in establishing operator system.
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V. SCHRODINGER EQUATION

A. The quest for a basic equation of quantum mechanics

Premise: The state of system is described by a wave function v (r, t)

Quest: Basic equation for the development of ¢ (r,t)

What is the rule that ¢(r,t) must obey and what is the rule that governs the development and evolution of the
wave function?

Answer: Ingenious conjecture

Our way: Try to approach the result through a simple example - Free particle, whose wave function is already
known

P(r,t) = e Pr=E)

We calculate the first derivatives of the wave function with respect to its variables. The equation should be of the
form of a partial differential equation

oY ) 0P
Er hE?/}élﬁat = Ey
oy i %y 1,
dr  RY® Bg2 p2le
o i o 1

2
oy P g T b

op i o1

o i oY _ 2
9z hP* 922 n2P=

2m
V= 5 (ph + 0 + P2 = — S5 By

We have for free particle
0 h?
ih—t) = Ftp = ———V?2
‘ 8151/} v 2m v
For a particle in potential V(r) we replace E in the above equation with

1
E=_—p*+V
2mp +V()

and get a generalized equation

LOU(rt) (R,
ih e 2mV +V(r) ) ¢¥(r,t) (4)
Usually it is written in a more compact form
DA L1 N

ot

with the Hamiltonian operator of the system (the operator of energy of the system) defined as

- 1
H= %ﬁz + V(i&y,Z)

L oo o 2
= 5. (0o + 5, +52) + V(z,y,2)

Equation (4) is called the Schrodinger Equation, one of the basic axioms of quantum mechanics.
We noted that:
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e The Schrodinger equation (4) is not deduced, but conjectured. Its correctness is qualified by the accordance of
results deduced from it with experimental facts.

e Notice the special role played by Cartesian coordinate system in obtaining the Hamiltonian.

e The discussion can be generalized directly to many-body system

L0 A

lhad’ (ri,r2,r3,--) = Hi (ry,ra,13, - +)

_Zipz +V (r1,r2, 13, +ZU(ri]’)
where U(r;;) characterize the interaction between particles.

B. Probability current and probability conservation

The physical meaning of p(r,t) = ¥*(r,t)¥(r,t) is the probability density. From the Schrodinger equation (4) and
its complex conjugate

,m&/’ai(t’t) _ < 2o v )) Y (r,t)

we can calculate the time derivative of the probability density

h2 *VQ VQ *
—%(1/’ Y —PVIYPr)
h2
Z—*V (Y*Vip —pVy)

L0
’Lﬁ& (P*(r, t)(r, 1) =

An integration over a volume V gives

iy [[[ oteoa /// (VY — V)

which can be transferred into an integration over the surface s enclosed by V

mdt/// rtdr——h—z b (4 V — YVyT) -d

e (e e

Define now the current density of probability as

and

i= (—) (V" Vip — V)

we thus arrive at the continuation equation of probability density

5] et fiode=o

and the differential and integral equation of probability conservation

W ivi=

i /f], o ]g-.dﬁ
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FIG. 12: Current density of probability

FIG. 13: Conservation of probability.

This equation is telling us that the rate of change of density (the amount of a substance at a point) is equal to (-ve
of ) the gradient (grad) of the current density. If we write this in one dimension it’s perhaps a little easier to see why
this relationship is true:

dp  0j

o Ox
Essentially, 0j/0z at a point is the difference between the amount of “stuff” flowing into that point and the amount
flowing out. Since probability is conserved, if there is any difference, this must be the rate of change of the amount of

stuff at that point i.e. dp/0t.
We take again the free particle as an example. The wave function propagating along x

) = ei(szwt)
leads immediately to a constant probability density

p =1= const.
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B —_—
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FIG. 14: Example: Free particle

The current density

j — _ﬁ (e—i(km—wt)vei(k'z—wt) _ ei(km—wt)ve—i(km—wt))
2m

ih
= ——2ikxo = —Xg = VXp.
2m m

The velocity of classical particle v is just the current density and we have V - j = 0 which is consistent with the result
dp/ot = 0.

We can extend the region of interest to the entire space. In this case the wave function ¢ must go to zero in the
infinity - otherwise it would not be normalizable, so must the current j

SR N0 =0 g 1=0

jt///j p(r, t)d®r = 0

which means the conservation of total probability in the entire space.

We thus have

C. Stationary Schrédinger equation

For many physical models the potential V(r) is independent of time ¢. In those cases the Schrédinger Equation (we
denote the time-dependent wave function by ¥ and stationary solution by 1 in the following)
0¥ (r,t) n* _,
h———" = ——V*U(r,t) + V(r)¥(r,¢
im0 () + V) )
can be solved by the method of separation of variables (the physicist’s first line of attack on any partial differential

equation): We look for solutions that are simple products,

U(r,t) = o(r)f(t)

where ¢(r) (lower-case) is a function of r alone, and f(t) is a function of ¢ alone. On its face, this is an absurd
restriction, and we cannot hope to get more than a tiny subset of all solutions in this way. But hang on, because the
solutions we do obtain turn out to be of great interest. Moreover, as is typically the case with separation of variables,

we will be able at the end to patch together the separable solutions in such a way as to construct the most general
solution.

The Schréodinger Equation reads
d h?
ing @] v = { (<57 v v f 100
Or dividing through by ¥(r) f(¢)

indfe)  (-EmvEHvE)u)

O P(r)
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Now the left side is a function of ¢ alone, and the right side is a function of r alone. The only way this can possibly
be true is if both sides are in fact constant - otherwise, by varying ¢, I could change the left side without touching the
right side, and the two would no longer be equal. The separation constant F is introduced in the process of separation
of variable and recognized to be the energy of the system. Then we have

., 0
Zhaf(t) =f(E

with solution

f(t) = e 7

and
(_j;w V() () = Bulo)

This is the time-independent Schrédinger Equation, or Stationary Schrédinger Equation. The natural
boundary conditions should be imposed on: first of all the wave function should be single-valued and limited. Fur-
thermore ¥ (r) and its spatial derivations should be continuous (there may be exceptions in the above conditions for
some artificially simplified V' (r))

The following chapters will be devoted to solving the time-independent Schrédinger equation, for a variety of simple
potentials. But before we get to that you have every right to ask:

What’s so great about separable solutions?

After all, most solutions to the (time-dependent) Schrédinger equation do not take the form ¢ (r)f(t). I offer three
answers — two of them physical and one mathematical:

(i) They are stationary states. Although the wave function itself, ¥(r,t) = ¢(r)e~#Z* does (obviously) depend
on t, the probability density |¥(r,t)|* = |4 (r)|* does not - the time dependence cancels out. The same thing
happens in calculating the expectation value of any dynamical variable; Equation (3) reduces to

—+o0

@)= [

— 00

dzy* () Q (x ‘%i) b ()

Summarized in one word, stationary state is stable to all the test, i.e. the result doesn’t change with time. If a
particle is initially put in a state with energy F, it will stay there all the time, i.e.

U(r,0) = p(r) = U(r,t) = Yg(r)e 7

and moreover

p(r,0) = (vp(r)e F2) pp(e)e 5
= p(r)Yp(r) = p(r)

I
Jr, - m _,(/)E(r)e_%Etv (wE(P)C%Et)

_ _% {Up()Vep(r) — Yp(r)ViE(E)} =j(r)

(pz) = /// (w*E(r)e%Et) (—ihi) (sz(r)e—%Et) &r
= [[[ vt (=ingl ) vews
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Problem 5 Show that the expectation value of the velocity is equal to the time derivative of the expectation value of
position

_ d(=)
<U> - dt
And it is customary to work with momentum (p = muv)
_ A=)

For stationary states, every expectation value is constant in time. In particular, (x) is constant, and hence (p) = 0.
Nothing ever happens in a stationary state. (page 16 Griffiths)

(ii) They are states of definite total energy. In classical mechanics, the total energy (kinetic plus potential) is called
the Hamiltonian:

A =L 4 v

The corresponding Hamiltonian operator, obtained by the canonical substitution p — —ih%, is therefore

2 92
H= 0 +V(x)

 2m Ox?
Thus the time-independent Schrodinger equation can be written as the eigenvalue equation of operator H
Hy =By
which is the same as what we met in the introduction. And the expectation value of the total energy is
(H) = /wﬁwdx - E/ | do = E/ U dr = E

(Notice that the normalization of ¥ entails the normalization of .) Moreover,

02 = 0 (qu) —H(BY)=E (Hv,/;) — E%)
and hence

(H?) = /wﬁ%m = E2/|1/1\2dx = E?
So the variance of H is
o =(H*) —(H)=F*-E?*=0

But remember, if 0 = 0, then every member of the sample must share the same value (the distribution has zero
spread). Conclusion: A separable solution has the property that every measurement of the total energy is certain
to return the value E. (That’s why I chose that letter for the separation constant.)

(iii) The general solution is a linear combination of separable solutions. As we're about to discover, the stationary
Schrodinger equation yields an infinite collection of solutions, each with its associated value of the separation
constant

Yy (r) 2 (r) 93 (x) -+
E\,Ey,Es5---

thus there is a different wave function for each allowed energy

’(/}1 (I‘) e_iElt/h7

Yo (1) e—iEzt/ﬁ’ ...

\I/]_ (I‘, t)
\Ilg (I‘, t)
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Superposition of two or more states with different energies is not a stationary state. A much more general
solution can be constructed by a linear combination of the separable solutions

U (r,t) = Z Cnthy (r) e Ent/h
n=1

which means essentially the principle of superposition of states. The main point is this: Once you’ve solved the
time-independent Schrodinger equation, you're essentially done; getting from them to the general solution of
the time-dependent Schrodinger equation is simple and straightforward.

Problem 6 Introduction to QM (2ed) by Zeng Jinyan, page 47-48, 2, 3, 5 (homework2.doc)

Problem 7 Write down the stationary Schrédinger Equation in momentum representation (1D and 2D).

VI. REVIEW ON BASIC CONCEPTS IN QUANTUM MECHANICS

7 topics, 5 minutes presentation for each group

e State described by wave function

e Dynamical variables = operators

e Measurement and uncertainty principle
e Schrodinger equation

e Conservation of probability density

o Wave-particle duality

e Average value and standard deviation
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I. SQUARE POTENTIAL WELL

We consider a particle moving in a square potential well (Figure 1)

0, O<z<a
V(I)_{VO, r<0,x>a

and in this case the stationary Schrédinger equation
h? d?
 2m da?

P(z) + V(z)y(x) = Ey(x)

can be solved exactly.
The physics here is the one-dimensional material-wave propagation in a potential well. We will confine our discus-
sions to cases with energy FE less than Vj.

A. An idealized case - Infinite square potential well

First we solve the idealized model of above potential, that is when Vj — +00, a infinite square potential well

1. Solution
For the potential
0, 0<z<a
V(x)_{—koo, z<0,z>a

it is easy to know
h? d?
“om dzz ¥
PY(x)=0 forz <0,z >a

x)=FEy(z) for 0<zx<a

Let k? = 2mE/h?, we have
2

dz?

U(@) +k*(z) =0

= Y(x) = Asin(kz + 9)

A and 6 are two constants to be determined shortly.

2.  Energy quantization

According to the natural boundary conditions, ©(x) should be continuous at z = 0 and = = a. So

¥(0) =v(a) =0
which tells us § = 0, and ka = nm, with n = 1,2,3--- (because A = 0 and n = 0 give trivial, non-normalizable
solution ¢ (z) = 0. Furthermore n = —1, -2, —3- - give nothing new since we can absorb the minus sign into A). So
the distinct solutions are
by =" with n=1,2,3--
a

and

Yn(x) = Asin (%x)
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FIG. 1: One dimensional square potential well.

Curiously, the boundary condition at z = a does not determine the constant A, but rather the constant k, and hence
the possible values of E:

k2, wh?

E, =
! 2m 2ma?

In sharp contrast to the classical case, a quantum particle in the infinite square well cannot have just any old energy—
only these special allowed values. The energy of system (particle) is quantized.

Note: For infinitely high potential well, waves can’t penetrate into the forbidden regions. They are fully reflected
and standing waves is established. (Figure 2)

3. Wave function normalization

Well, how do we fix the constant A? Answer: We normalize 1):

[ e = [ AP T = 47 S =1
oo 0 a

This only determines the magnitude of A, but it is simplest to pick the positive real root:
A=4/-
a
(the phase of A carries no physical significance anyway). Inside the well, then, the solutions are
2 . nw
Yn(x) = \/;sm(aac), n=123--

As promised, the time-independent Schrodinger equation has delivered an infinite set of solutions, one for each
integer n. The first few of these are plotted in Figure 2; they look just like the standing waves on a string of length
a. 1, which carries the lowest energy, is called the ground state:

Ei= 5 #0

2 . 7z . m2h
Uy (x,t) = \/;sm(a) exp <_Z2ma2 t)

the others, whose energies increase in proportion to n2, are called excited states.
Heisenberg uncertainly relation can be easily checked on the lowest energy state. We know the standard deviation
(uncertainty) in position space is obviously Az ~ a and it is also clear Ap ~ fi/a from the ground state energy

E:p2/2m~%. So Az - Ap ~ h.
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FIG. 2: First 3 wave functions and the corresponding energy levels of infinite one dimensional square potential well.
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FIG. 3: First 3 wave functions and the corresponding energy levels of infinite one dimensional square potential well - shifted
coordinate system.

4. Shift of origin of coordinate

We now shift the origin of coordinate so that the potential takes the form

_ 0, -5 <x<§g
vo-{te, i

The wave function in the shifted coordinate system are

{\/gcos(’f:r), forn=1,3,5---
\/gsin(%z), forn—=2,4,6--

which show a regular symmetry about the origin x = 0, called the parity. For n = 1,3,5---, wave functions are
symmetric (even functions) about x = 0, and are said possessing even parity. For n = 2,4,6---, wave functions are



anti-symmetric (odd function) about 2z = 0, they have odd parity. There is a minus sign in the wave functions for the
1st and 2nd excited states compared with the unshifted system, which however, does not lead to big problem because
it gives a trivial phase of .

B. Square potential well of finite depth

Now we consider the situation that the depth of the barrier is finite. We use here the shifted coordinate system.

1. Solution
The potential is now
0 << g
- ) 2 2
Vi) { Vo,  lal >3

() for a particle with energy E less than V; (E < Vp) differs from zero for all z values.

M
A B C

0

i

____________ o
l

-a/2 0 a/2 x

FIG. 4: One dimensional square potential well of finite depth.

Region A or C Region B
g e (@) + Vo () = B ()| 45 B (2) 0 0(a) = Bo(a)
() = B(Vo - EY(e) =0 45¢(z) + 2Eg(x) =0

(Vo - E) = 5 , =k
ez t(z) — B(x) =0 T t(x) + k*(2) =0
Y(x): exp(Bz) or exp(—pSx) cos(kx) or sin(kx)

Requirements of general rules on determining the correct wave functions
e Naturel boundary conditions: wave function must be limited, especially for x — +o0.

e The potential V() is symmetric about origin, the wave functions must be of definite parity.

2.  Fven parity case
From the continuation of wave function and its derivative (Figure 5), we have
ka a
Acos|— | = Be (f f)
< 5 ) xp | —B5

k. ka 153 a
—EA Sin (2) = —§B exp (—/65)



,T\ Wave function must be continuous here ﬁ

Derivative of wave function must be continuous he

FIG. 5: Even parity solution.

,T\ Wave function must be continuous here i

Derivative of wave function must be continuous he

FIG. 6: Odd parity solution.

which gives

ptan (Z) = § (1)

This is the limitation on wave function set by natural boundary conditions. It is actually a transcendental equation

of the form
1 /2mE 2mEa\ 1 [2m(Vo— E)
5\ e tan (\/ 522> =V e 2)

Since values of m, a, and Vj are given, it is a transcendental equation of F. Only E values that satisfy the above
equation can be the energy value of that particle.

3. Odd parity case

The natural boundary conditions lead to the following equations

C'sin <k2a> = Dexp (—5%)
k

which gives

E ot (’“’) __8 3)

This is another limitation on wave functions set by natural boundary conditions which is equivalent to the transcen-

dental equation
1 /2mE 2mE a 1 /[2m(Vp — E)
o\ Tz (V n2 2) 2V T 2 @

It is the equation submitted by energy values E of odd parity states.



4. Graphical solution of the energy defining equation

The energy value E must satisfy one of the two equations

E tan @ = é
2 2 ) 2
k <ka) B
—cot| — | =—%
2 2 2
Multiplied by a, they become
@ tan @ = @
2 2 ) 2
k—a cot @ = — @
2 2 ) 2
Let
1 1 /2mE
fTakema e
1, 1 [2m (Vo — E)
n=gha= g h2

with £ and 7 larger than 0. We notice that £ and 7 are not independent each other, rather, they are linked by

€2 42 = ﬂVoaz

2h?
Thus the energy defining relations can be decomposed into two set simultaneous equations
ftané =n
2 2 _ M 2
&+n = ﬁVoa
and
—€coté =
2 2 _ M 2
&+n = ﬁvoa

For a given set of values m, Vj, a, the energy E can be evaluated by finding out the intersection points of above
two sets of simultaneous equations. Group of &2 + 7% = /% Vya? with different (V0a2) values are shown in Figure 7.
i 2R
Our main results are:

1. For a given potential well (VOaQ), numbers of intersection points (bound states) are limited

value of (25Vpa?)?:  (0,5) (Z,7) (m25) (32,2r)
number of intersection points: 1 2 3 4

2. Bound states have definite parities. As the energy increases, even parity states and odd parity states appear
alternatively with the leading (lowest energy) one to be even parity.

lowest state with even parity always exist
2 232

m T 0
ﬁVoa2 > T i.e.Vpa® > et lowest state with odd parity can exist
m
m 212 h?
ﬁVoa2 > 72 i.eVoa® > , 1st excited state with even parity will appear
m

3. No odd parity bound state for & potential well. In the symmetric finite potential well, let the width a — 0, the
depth V) — +00 and keep Vha = v =constant The potential becomes & potential

V(z) = -6 (x)
It is obviously not possible for Vya? to satisfy the condition for lowest state with odd parity.

Problem 1 Zen Jinyan, Textbook, page 80-84, Problem 1,3,4,12



0 lz/2 2 3o .4 3w /2
(b)

FIG. 7: Group of £ +n? = %Vg(ﬁ with differnt (Voa2) values
II. GENERIC PROBLEM OF QUANTUM MECHANICS

A lot has happened in the last several sections, so let us recapitulate, from a somewhat different perspective. Here
is the generic problem of Quantum Mechanics.

V (z) time-independent potential

= U (zx,t for any subsequent time ¢
U (x,0) starting wave function } (%) Y d

To do this you must solve

ihaa—\f = —%ZT\S +V(x)W
W (z,t) = ¢ (2) f(t) =¥ (z) exp (—iEt/R)

The strategy is first to solve the stationary (time-independent) Schrodinger equation

B2 2
ey - E
2m dx? +Vy ¥

this yields, in general, an infinite set of solutions

P1(x) Po(z) th3(x) ---
El E2 E3

To fit ¥ (z,0) you write down the general linear combination of these solutions

v (:L‘70) = Z Cntn (33)



the miracle is that you can always match the special initial state by appropriate choice of the constants c1, co, cg,- - .
To construct ¥ (z,t) you simply tack to each term its characteristic time dependence exp (—iE,t/h)

= Z cntn () exp (—iE,t/h) = Z cn U (5)

n=1

The separable solutions themselves

U, (z,t) = ¥, (x) exp (—iE,t/h)

are stationary states, in the sense that all probabilities and expectation values are independent of time. This property,
however, is emphatically NOT shared by the general solution (5); the energies are different, for different stationary
states, and the exponentials do not cancel, when you calculate |¥ (z,t)|*.

A. Properties of wave functions

In the case of the infinite square well, the solutions

2
U (2) = \/>sin(m), n=1,2,3--
a a

have some interesting and important properties:

1. They are alternately even and odd (for symmetric V(z))
2. 1, has (n — 1) nodes (zero-crossing) (universal)
3. Orthogonality (quite general)

/wfn(:c)wn(x)dx:o mtn

/w;; (2) Yom (&) do = 1

In fact we can combine the orthogonality and normalization into a single statement

/dJ o) de =6 {0 iftm#n

Normalization

1 ifm=n
We say that the ¢’s are orthonormal.

4. Completeness (holds for most potentials)

Any function f(z) can be expressed as a linear combination of ¥,

Zcmn \f > o )

We recognize that Equation (6) is nothing but the Fourier series for f(z), and the fact that "any” function
can be expanded in this way is sometimes called Dirichlet’s theorem. The expansion coefficients ¢, can be
evaluated—for a given f(z)-by a method I call Fourier’s trick, which beautifully exploits the orthonormality
of {1y, (z)}: Multiply both sides of Equation (6) by ¢7 (z), and integrate

e = / G5 (2) fl)de
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¥(x,0)

Ad'/4+

FIG. 8: The starting wave function in the example.

B. Construction of the most general solution
The stationary states of infinite square well are evidently

W, (1) = \f i (M) i)
a a

We claimed that the most general solution to the time dependent Schrédinger equation is a linear combination of
stationary states

VU (z,t) = Z Cn\/;sin (%x) e~ i(n**h/2ma’ )t
n=1

(Don’t believe? Check it !) Any prescribed initial wave function ¥ (z,0) can be expanded on {1, ()} by appropriate
choice of the coefficients ¢,

U (z,0) = Z cntn () completeness
n=1
2 a
Cn = \[/ sin(@x)\ll (z,0)dzx orthonormality
a Jo a

Here is a procedure:

U (z,0) = ¢, = ¥ (x,t) — dynamical quantities

C. An example

A particle in the infinite square well has the initial wave function
U (z,0) =Az(a—z), (0<z<a)
outside the well ¥ = 0. Find ¥ (z,t).
Solution: First we determine A by normalization
“ 2 2 [ 2 a°
1 :/ |¥ (z,0)|" de = |A] / 2 (a — x)%de = |A]® —=
0 0 30

30

AZE
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\/5/“ . (mr ) 30 ( \d 0, if n is even
=1/= [ sin(—z)y/—=z(a—z)dx = :
a Jo a ad 815/ (nm)®, ifnis odd

U () = 30<2) Z —sm ("% 2) exp (~in®n*ht/2ma?)

a ™
1,3,5

Loosely speaking, ¢, tells you the “amount of 1, that is contained in ¥”. Some people like to say that |cn|2 is
the “probability of finding the particle in the n-th stationary state”, but this is bad language; the particle is in the
state ¥, not ¥,,, and anyhow, in the laboratory you don’t “find a partlcle to be i in a particular state” - you measure
some observable and what you get is a number. As we will see later, what |cn| tells you is the pmbabzlzty that a
measurement of the energy would yield the value E,. The sum of these probability should be 1, anl |cn| =1, and
the expectation value of the energy

o

(H) = Z |Cn|2 E,

n=1

is independent of time which is a manifestation of conservation of energy in Quantum Mechanlcs
The starting wave function closely resembles the ground state ;. This suggests that |cl| should dominate, and in
fact

o 815
|Cl - 3

2
) = 0.998555 - - -

The rest of the coefficients make up the difference

2
> 8v/15 =]

n=1

The expectation value of the energy in this example is

2
> 8v/15\ 1 n272h?  480R? & 1 5h2
() - ( ) - 5

3 nb 2ma? mtma?

™
n=1,3,5---

n=1,3,5---

where we have used

1 n 1 n 1 T 7
16~ 36 56 960
1 1 1 7t
T TR T3
As one might expect, it is very close to F, = szz slightly larger, because of the admixture of excited states.

Problem 2 Griffiths, page 38, 2.4, 2.5, 2.6, (for advanced exercise)

III. THE HARMONIC OSCILLATOR

The classical harmonic oscillator is governed by Hooke’s Law

A2z

F=—kzy=m—
X mdt2
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V(x)

/

FIG. 9: Parabolic approximation (dashed curve) to an arbitrary potential, in the neighborhood of a local minimum.

where m is the mass of the particle and k is the force constant of the spring. The solution is

z(t) = Asin(wt) + B cos(wt)

with the frequency of oscillation w = 4/ % The potential energy is a parabola

1

Practically any potential is approximately parabolic, in the neighborhood of a local minimum (Figure 9). Formally,
if we expand V(z) in a Taylor series about the minimum

V(@) = Vi{wo) + V' (@o)(x — o) + 5V" (wo)(x — z0)* + -+
1

V(.’ﬂ) = ivll(l'())(fl? — 1'0)2

which describes a simple harmonic oscillator about point z¢ with an effective spring constant & = V"'(x(). The simple
harmonic oscillator is so important: virtually any oscillatory motion is approximately simple harmonic, as long as the
amplitude is small. The quantum problem is to solve the Schrédinger equation for the potential

Viz) = §mw21:2

As we have seen, it suffices to solve the time-independent/stationary equation

A. Algebraic method: ladder operator

To begin with, let’s rewrite Equation (7) in a more suggestive form

% P’ + (mwx)ﬂ = E

because of

=St

s_hd 1
P i dx’ 2m
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1.  Commutator

The idea is to factor the term in square brackets. If these were numbers, it would be easy
u? + 02 = (iu +v) (—iu + v)
However, u and v are operators and do not commute
Ip # pT
(If T forget the hat for operators, forgive me). Still, this does motivate us to examine the quantities

a4 = (Fip + mwi)

1
vV 2hmw
We see that
1

T 2hmw

(ip + mwi) (—ip + mwi)

X
IS
+

|

1 A2 2 . “ A an )
= mwi)” — imw (£p — pi
T (p + (mwz) (@p — pz)
As anticipated, there is an extra term (Zp — pi), which is called the commutator of & and p, it is a measure of

how badly they fail to commute. In general, the commutator of operators A and B is

In this notation,

Dropping the test function, which has served its purpose
[#,p] = ih
This lovely and ubiquitous result is known as the canonical commutation relation. With this,

1 . 1
G- ot
a-a+ huw +2

. 1
H = hw (am— 2)

The Hamiltonian does not factor perfectly - extra term —%. The ordering of a_a, is important

or

1 . 1
o = —H — =
ara 9
we thus have
[a,,d+] =1

and

The Schrodinger equation H 1) = F for the harmonic oscillator takes the form

hw (ai&jFi ;) W= By
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2. Ladder operators

Now, here comes the crucial step: I claim that if Hi) = Ev then

Proof:

A (i,0) = o (a+a + ;) (a4)
= hw (amm + ;M) "
= i [fw <a+&_ + % + 1> Y]
— G, (PI+M)1/J:&+(E+M)1/J

= (B4 hw) (a4¢)

By the same token, a_1 is a solution with energy (E — hw).

H (a-9) = (B — hw) (a_v)

Here, then, is a wonderful machine for generating new solutions, with higher and lower energies - if we could just find
one solution, to get started! We call a1 ladder operators or raising/lowering operators, because they allow us
to climb up and down in energy. The ladder of states is illustrated in Figure 10.

But wait! What if I apply the lowering operator repeatedly? Eventually I'm going to reach a state with energy less
than zero, which does not exist! At some point the machine must fail. How can that happen? We know that a_1 is
a new solution to the Schrodinger equation, but there is no guarantee that it will be normalizable-it might be zero,
or its square integral might be infinite. In practice it is the former: There occurs a “lowest rung” (let’s call it 1)
such that

ie

We can use this to determine o (z)

di mw
T
/ Wo __mw [ i
Yo  h
Iny = —%ﬁ + const.
Yo = Ae~ B

The constant A is given by the normalization
+o0 h
1= \A|2/ exp (—%xg) dx = |A|2\/—7T
o h mw

L e
wh

SO
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FIG. 10: The ladder of states for the harmonic oscillator.

and hence

b= (22) " e (2 ©

To determine the energy of this state, we plug it into the Schrodinger equation

L 1
hw (a+a_ + 2) ¢0 = Eo’(/)()
and exploit the fact that a_1yy =0

1
Ey = 3 hw 9)

It is customary for harmonic oscillator that the states start with n = 0, instead of n = 1. We then apply a4 repeatedly
to generate the excited states, increasing the energy by Aw with each step

Yn(r) = Ap(ay)"o(z) (10)



with

1
E, = — ) hw
(n+2)

Ezample: Find the first excited state of the harmonic oscillator.
Solution: Using equation (10)

2 [fme (2mwN [T (22 gy — A —
| Aq| wh(h)/ xeXp( hx)da:_|A1\_1

oo

We can normalize it

We often use the following Gaussian integrals

3. Normalization algebraically: find A,

It seems not easy to get the normalization factor for ¥s59. So we do it algebraically.
proportional to 1,41

G4n = CptPny1
d—wn = dn’l/)n—l

but what are the proportional factors, ¢, and d,,? First note that

e For any functions f(z) and g(z)

+oo +oo
/ J*(awg)de = / (a2f)" gdz

oo — 00

G+ is the hermitian conjugate of a+. Proof:

1 too d
left = \/m/_oo f (:th:r—l—mwx) gdz
«dg @y
/f dxdx—> /g<d:v> dz

1 oo d *
left = 7/ [(iﬁ + mwx) } dx = right, QED
f o) . fl g ght,Q

e From Schrédinger equation

Integration by part gives

SO

o <&+a_ + ;) Yn = Entpy = o <ﬁ+ ;) n

hw(d—&-i-_;) ¢7L:Enwn:hw<ﬁ+1—;> Un

16

We know that a4, is
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we clearly see

ara_tp =np,  Ga_aiP, = (n+ 1),

In particular

oo ~ * /A 2 Heo 2 2
/ (65 tn)" (520) dz = |co] / nia 2 dz = [cal

- +oo +oo 9
:K (&_d+¢n)*wndm:(n+l)[ (oo da
=(n+1)
similarly
oo o [T 2 2
[ @vde = [ aafde = 1a,]
+o0 +oo 9
:/_ (d+d,z/)n)*1/1ndx:n/_ || dx
=n
LAty =V Thap Gty = Ve
Thus
1 = a0
b =y = = ()2
2= o+t =5 (04) %o
1 1
3 = ﬁ@#ﬁz = New (a+)° vo

b = % (a+)" o (A” B jﬁ)

e As in the case of the infinite square well, the stationary states of the harmonic oscillator are orthogonal

+oo
ﬂ}:n 1/% dx = (;mn

— 00

Proof:

+oo +oo +oo
/_ e B /_ (6 tpm)” —Pude

+oo +oo

_ / (4 b)) Yudz =m | ¢ 0ude

— 00 — 00

Unless m = n, then fj;o Wk ppdr must be zero. Orthonormality means that we can again use Fourier’s trick

to evaluate the coefficients, when we expand ¥(z,0) as a linear combination of stationary states, and |cn|2 is
again the probability that a measurement of the energy would yield the value E,.

FEzample: Find the expectation value of the potential energy in the n-th state of the harmonic oscillator.

Solution:
ANV S SCAN 2/+oo * A2
<V> = <2mw T > = 2mw N Y& Y dx
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. h "

T 2mw(a++a7)

2= a2 vaca +aay+a]
2mw '+ * * -

N\ hw
()= /w;;[ai baga +a_ay + a2 |pede

hw 1 1
= -_— 1 i —
4(n+n+ ) 2ﬁw(n+2)

1

B. Analytic method: differential equation

We return now to the Schrodinger equation for the harmonic oscillator

A 1 4,
SR — E.
2m dz? + 2mw =Y v

Things look a little clearer if we introduce the dimensionless variable

in terms of ¢ the Schrédinger equation reads

d?e _ 2F
7 (£ -K)y  with K=

Our problem is to solve the differential equation, and in the process obtain the allowed values of K (or E).
To begin with, note the behavior of ¢ at £ — £oo. We are only interested in the bound states, i.e., lime_, 15 9 (§) —
0.

PV
d£2 NE w

'S £
P (€) ~ Aexp(fg) + Bexp(?)

The physically acceptable solutions, then, have the asymptotic form

2

Y€ > Qe(-5)  at large €

We define
2

¥ (€) = exp(~ S A

where h(€) should have a simpler functional form than v (£). Differentiating 1 (&)

(G- w5

d¢  \ d¢ 2
d?e d?h dh &2
ZF [ 22 92 2_1 _>
s S DL
Schrédinger Equation becomes Hermite equation
d*h dh
— —2%—+(K-1)h=0 (12)

dg? dé



We look for solutions in the form of power series in &, i.e. solutions by method of Frobenius method

h(é)ZZajgj =a0+a1§+a2§2+...

=0
dh =~ . i, 2
d?:ZJGJf] = a1+ 2a2§ + 3a38” + - -

=0
d2h Nt c. j—2 > . . j
75222.7(]—1)%‘5 =Y G +1) (G +2)aj2¢

=0 §j=0

=2ay +2-3a36 + 3 -dag? + - -

Putting these into equation (12), we find

D (G +1) (G +2) ajez — 2ja; + (K — DagJ¢? =0
§=0
It follows that the coefficients satisfy the recursion formula
. 2j+1-K
i+2 = 7o~ a5
GG+

Starting with ag, it generate all the even-numbered coefficients

_l—K _5—K _(1—K)(5—K)
ag = D) ap, a4 = 12 ag = 24

a,07...

and starting with aq, it generate all the odd-numbered coefficients

L_3-K - T-K _(3-K)(1-K)
3 — 6 1, 5 — 20 3 — 120 1,

The complete solution is written as

h(f) = heven(g) + hodd(f)

heven(f) =ag + a2§2 —+ a4§4 N
hodad(€) = a1€ + az€® + as&® + - --

where two free parameters ag and a; are just what we would expect for a second-order differential equation.

19

(13)

However, not all the solution so obtained are normalizable. For at very large j, the recursion formula becomes

2
Ajt+2 ~ 5%
1)
mam Gme_ 2 1
Aom 2m  m
which are the same coefficients as ¢~ in Taylor series
e o ¢2m ) 4 6 8
= S - S o4 S 4s 4
e mZ::Om! +EH T o

€] = o0 heven(§) ~ 652
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j=2m+1 similarly hegq(€) ~ & et
We have

{6_62/2h€ven(£) ~ 652/2

1/’(5) 6_52/2h0dd(§) ~ 5652/2

diverges at [£| — oo

This is precisely the asymptotic behavior we didn’t want. The series must be terminated. There must occur some
"highest” j (call it n), such that the recursion formula spits out a2 = 0. Then, equation (13) requires that

K=2n+1, n=0,1,2,--- (14)
(This will truncate either the series heyen 0T hodq; the other one must be zero from the start

ar =0 if niseven

ap=0 ifnisodd
or remains infinite series which should be discarded.)
an #0, Gpyo=apis=---=0

In each case, we find a solution H,(§).

1. Discussion on the energy quantization

The energy must be (referring to equation (14))
1
E = (n+2> hw, n=0,1,2,---

Thus we recover, by a completely different method, the fundamental quantization condition we found algebraically in
equation (11). The levels in harmonic oscillator are equally distributed.

The Schrodinger equation has solutions for any value of E' but almost all of these solutions blow up exponentially
at large x, and hence are not normalizable. Figure shows the solutions for 3 different values of E. It is clear that only
the solution corresponding to E = 0.5hw is physically acceptable and hence survives.

2. Discussion on the wave function

o An—g)
GG +2)

e if n =0 there is only one term in the series (we must pick a; = 0 to kill hyqq, and j = 0 yields as = 0)

ho(§) = ao

hence
Yo(€) = age~¢/?
e ifn=1 we take a9 =0, and j =1 yields a3 =0

hi(§) = a1€

hence

$1(€) = arée /2
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-1
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FIG. 11: Solutions to the Schrédinger equation for E = 0.494w, 0.5/w, and 0.51Aw.

e ifn=2 j=0yields ay = —2ag , 7 =2 yields ay =0

ha(€) = ao(1 — 267

hence

U (€) = ap(1 — 262)e € /2

and so on

21

In general, h,(£) will be a polynomial of degree n in &, involving even powers only, if n is an even integer, and
odd powers only, if n is an odd integer. Apart from the overall factor (ag or ai) they are the so-called Hermite
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polynomials, H,(£). The first few of them are listed here

By tradition, the arbitrary multiplicative factor is chosen so that the coefficient of the highest power of is 2". The
orthonormality and recursion formula of H,(§) are

+o0 9
Hm(g)Hn(g)eig d§ = \/77_277, “1l6mn

—0o0

Hp11(8) = 26Hn(§) + 2nH,1(§) = 0

OH,(§)
23

= 271Hn,1 (5)
With this polynomials, the stationary states for the harmonic oscillator are
Un(x) = Nne*%O‘zIan(ax)

We normalize it by

+oo
¢;L(x)¢n(x)da: = dmn,
and find
o 1/2 1 12 oy 1/4
N = (7T1/22"n!) - (2”71!) (E)
Therefore

n(z) = ( 1 )1/2 (mw>1/4exp (7@:172) Hy %x)

2nn! Th
We see that the potential is symmetric about = 0, so the wave functions have either even or odd parity.

Pn(=2) = (=1)"¢n(x)
The ground state with Ey = %ﬁw is easily identified

wo= () e ()

which is the same as what we have got by algebraic method equation (8).

In Figure 12 I have plotted ¢, (x) for the first few n’s. The quantum oscillator is strikingly different from its
classical counterpart — not only are the energies quantized, but the position distributions have some bizarre features.
For instance, the probability of finding the particle outside the classically allowed range (that is, with x greater than
the classical amplitude for the energy in question) is not zero (see the following example), and in all odd states the
probability of finding the particle at the center of the potential well is zero. Only at relatively large n do we begin
to see some resemblance to the classical case. In Figure 13 I have superimposed the classical position distribution on
the quantum one (for n = 100); if you smoothed out the bumps in the latter, the two would fit pretty well (however,
in the classical case we are talking about the distribution of positions over time for one oscillator, whereas in the
quantum case we are talking about the distribution over an ensemble of identically-prepared systems).
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A v [y éx)]?
\ /i -—n=3
\/ - —— gy = 2
o it oy —_n=1
——————————— — - -————n=0

Potential
- X
0 x o

FIG. 12: The first four stationary states of the harmonic oscillator.

2
[wieo(x)]” 0.24 —

|
016 | I

0.12

0.06

0.04

AL DAL AL

s i |

FIG. 13: Graph of [¢100|> with the classical distribution (dashed curve) superimposed.

0.0 >
X

Ezample: In the ground state of the harmonic oscillator, what is the probability of finding the particle outside the
classically allowed region?
Solution: Classically allowed region extends out to

1 1
2mw 12 =FEy = 2hw

or

h
Jjo = —_—
mw

so &y = 1 where the velocity of the particle is zero. Quantum mechanics tells us the probability of finding the particle
outside the classically allowed region is

(/1oo e_£2d£)/(/()oo € de) ~ 15.7%
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Problem 3 Griffiths, page 86, 2.41

Problem 4 Zeng Jinyan, Textbook, page 80-84, 8,9,11

IV. THE FREE PARTICLE: REVISITED

We turn next to what should have been the simplest case of all: the free particle [V (z) = 0 everywhere]. Classically
this would just mean motion at constant velocity, but in quantum mechanics, the free particle is in fact a surprisingly
subtle and tricky example. The time-independent Schrodinger equation reads

R 2
LYY _ B
2m dx? ¥
or
a2y omE
— = —k? k=
dz? ¥, h2

As in the infinite potential well,
w(x) _ Aeikm + Befikac

We have no boundary condition to restrict E, free particle thus can carry any (positive) energy. Tacking on the
standard time dependence, exp(—iFEt/h), we have

U(z,t) = Aek@— 350 4 pe—ika+ kD)

The first term in the above equation represents a wave traveling to the right, and the second term represents a wave
(of the same energy) going to the left. By the way, since they only differ by the sign in front of k, we might as well
write

Up(z,t) = Aeik(xf%t)

and let k runs from negative to positive

P 12mE (k> 0= traveling to the right
o h2 7 | k <0 = traveling to the left
The “stationary states” of the free particle are propagating waves with wave length A\ = 27/|k|, momentum p' = hk.
The speed of these waves (the coefficient of ¢ over that of z)

e _ [E

Vquantum =
4 2m 2m

On the other hand, the classical speed of a free particle with energy E is given by F = %mvz (pure kinetic, since
V =0)

2F

VUclassical = = 2vquantum

Evidently the quantum mechanical wave function travels at half the speed of the particle it is supposed to represent!
We'll return to this paradox in a moment — there is an even more serious problem we need to confront first: This
wave function Wy(z,t) is not normalizable

+oo +oo
/ U0 de = |A|2/ dx = |A]?c0

— 00 — 00
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\
Wix, 1)|2
05 |¥(x, )l

0.4

U
_/

-6 -4 -2 0 2 4 6

FIG. 14: Graph of |¥(z,t)|* at t = 0 (the rectangle) and at t = ma?/h (the curve).

The separable solutions do not represent physically realizable states: There is no such thing as a free particle with a
definite energy. They play a mathematical role that is entirely independent of their physical interpretation.

The general solution to the time-dependent Schréodinger equation is still a linear combination of separable solutions
(only this time it’s an integral over the continuous variable k, instead of a sum over the discrete index n)

(e t) = m E)etk@—2mt) dg 15
(2,1) 7 ) o(k) (15)

1

Now this wave function can be normalized (for appropriate ¢(k)). But it necessarily carries a range of k’s, and hence
a range of energies and speeds. We call it a wave packet.
Generic quantum problem

U(z,0) = U(x,t)

For infinite potential well

\IJ(CC, O) = ch%(w%

2 a
Cp = \/>/ sin(ﬂx)‘l'(x,O)da:
a Jo a
For free particle

_ 1 e ikx
W(z,0) = \/?/_Oo (k) dk
(k) = \/% /_:o U(x,0)e” e dy

Ezample: A free particle, initially localized in [—a, a] is released at time ¢t = 0

A —a<z<a
, otherwise

U(z,0) = {0

A and a are positive real constant. Find ¥(x,t)
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Solution: Normalize ¥(x,0), A =1/v/2a

1 1 @ )
k)= ——/ P
o(k) o Vo ).
1 e—ikx 1 eiku _ e—ika
- 2/ma —ik %= k\/ﬂa( 21
1 sin(ka)

Jra &
15)

)

Finally, we plug this back into equation (

1 +° sin(ka)
U(z,t) = / Mg(kw—%ﬂdk
m™2a J -0 k

Numerical integration gives figure 14.
It is illuminating to explore the two limiting cases

e In the limiting case a — 0, we use the small angle approximation

1 sin(ka) 1 o

it is flat. This is an example of uncertainty principle: if the spread in position is small, the spread in momentum
must be large. (Figure 15)

a

e At the other extreme a — oo, the spread in position is broad
a sin(ka)
k)=4/—
o) = 220

I return now to the paradox noted earlier—the fact that the separable solution W (x,t) travels at the ”wrong” speed
for the particle it ostensibly represents. The essential idea is this: A wave packet is a sinusoidal function whose
amplitude is modulated by (Figure 17); it consists of “ripples” contained within an “envelope”. What corresponds to
the particle velocity is not the speed of the individual ripples (the so-called phase velocity v,), but rather the speed
of the envelope (the group velocity vg)— which, depending on the nature of the waves, can be greater than, less than,
or equal to the velocity of the ripples that go to make it up. What I need to show is that for the wave function of a
free particle in quantum mechanics the group velocity is twice the phase velocity—just right to represent the classical
particle speed.

it is a sharp spike about k£ = 0. (Figure 16)

VUquantum — phase velocity

Velassical — group velocity
For a monochromatic plane wave,
Uy (x,t) = Aellke—wt)
the phase plane is given by
kx — wt = constant

The velocity is the phase velocity v, = . The problem, then, is to determine the group velocity of a wave packet
with the

1 +oo ] W
U(z,t) = E/ (b(k‘)el(kl ) dk

The discussion here applies to all kinds of dispersion relation - the formula for w as a function of k.
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FIG. 15: For small a, graphs of ¥(z,0) and ¢(k).

The center of the wave packet is determined by taking the extreme value of the phase angle ¢ = kx — wt

Op dw
7r — ()t =
ok 0 = z—( dk) 0
So the center of the wave packet is at
dw
x=z.=( %)t
its velocity is called the group velocity
Y — dr  dw
S dt  dk
In the case of free particle w = g’ﬁj, SO
hk
Vg = E
hk
T om
vy = 2vp

vy is twice as great as vp. This confirms that it is the group velocity of the wave packet, not the phase velocity of the
stationary states, that matches the classical particle velocity

Uclassical = Ugroup = 2vquantum = 2Uphase

27



¥ (x,0)

o

a/m

NI A Y

FIG. 16: For large a, graphs of ¥(x,0) and ¢(k).

FIG. 17: A wave packet. The “envelop” travels at the group velocity; the “ripples” travel at the phase velocity.
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forbidden
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particle ensrgy
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FIG. 18: Barrier penetration model for alpha decay.

Problem 5 Griffiths, page 67, 2.22. page 86, 2.43

V. PENETRATION OF POTENTIAL BARRIER

According to classical physics, a particle of energy E less than the height V of a barrier could not penetrate -
the region inside the barrier is classically forbidden. But the wave function associated with a free particle must be
continuous at the barrier and will show an exponential decay inside the barrier. The wave function must also be
continuous on the far side of the barrier, so there is a finite probability that the particle will tunnel through the
barrier.

A. Case I: Barrier penetration F < Vj

Composed of two protons and two neutrons, the alpha particle is a nucleus of the element helium. As a typical
1D scattering problem, alpha particle emission is modeled as a barrier penetration process. Suppose a particle with
energy ' < V| approaches the barrier

Vie) = Vo, O<z<a
0, r<0,z>a

from the left along the positive z-axis, it is described by a free particle wave function. The Schrédinger equation

2 d?
o () + V(@)(e) = B (a)

has different solutions in different regions. Outside the barrier, the solution is
(z) ~ eFke, k=+V2mE/h

For z < 0, we have the incident wave and reflected wave, while for x > a we only have the transmitted wave.

eik:a: + Re—ika;’ r<0
w(l‘) = { S ikx
e, r>a
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FIG. 19: Scattering from a potential barrier.

We define the current density of probability for the incoming wave function

—ih x O ik hk
ji = ! (e_””e“” — c.c.) =—=v

T 2m ox m
while for the reflected wave and the transmitted wave
. 2
Ir = |R| v
. 2
Je=15"v
Therefore the reflection coefficient and transmission coefficient are
. . 2
Jrldi = |R|
o 2
Jt/ji = |S]

Inside the barrier, i.e. in the classically forbidden region 0 < x < a, the solution is

P(x) = Ae®® 4+ Be™**

with

1. Boundary conditions

There are four boundary conditions: continuity of ¢(z) and ¢'(x) at 0 says

1+R=A+B
ik —ikR =aA — aB
continuity of ¥ (z) and ¢'(z) at a gives
Ae®® 4 Be™ @ = Setka
ade®® — qBe™ = jkSe'*e
We can solve the equations for A, B, R, S as following

1+R=A+B

ik
~“(1-R=A-B
(1 R)

L .
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Ae®@ + Be e — Seika

At — Be— @ — %Seika
(0%

1 )
A== (1 4 ) Sezkae—aa

2 «

1

2

(1 _ Z) Sezkaeaa
(0]

(]_ + Zk) + (1 _ Zk) R = (1 + Zk) Seikae—aa
« (0% (0%
(]_Zk> + <]_+Zk)R_ <1’Lk> Seikaeaa
« (0% (0%

we thus have

1—ik/a o —
1 R:S ka aa
Jr1—&-z'k/oz “ e
1+ ik/a "
1 R:S 1ka ,aa
+17ik/a ec

The equation for transmission amplitude S is

Seikag=aa _1 (1 —ik/a 2
Setkaegaa — 1 1+ik/a

. 2 . 2
Seikaefaa 1= Seikaeaa <1 _Zk/a> . <1 —’Lk/a)

1+ik/a 1+ik/a
1 (141@/04)2 o o
Geika _ T+ik/a - (14 ik/a) 2— (1—ik/a) i
e—aa _ paa (}J—rz:;z) e~ (1 +ik/a)” — e (1 —ik/a)
—4dik /o
T o (1 - 2ik/a— k2/a?) — e (1 + 2ik/a — k2/a?)
—4dik /o
T (e — emaa) (1 — k2/a?) — 2ik/a (e7 + o)
B —2ik/«
~ (1 —k?2/a?)sinhaa — 2ik/a cosh aa
—2iko

(a? — k?) sinh aa — 2ika cosh aa
The transmission coefficient is
4k%a?
(a? — k2)? sinh? aa + 4k202 cosh? aa
4k%a?
(a2 + k2)? sinh? aa + 4k202

T=|S=
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where we have used
cosh? z — sinh?z = 1
Inserting o = /2m (Vo — E)/h and k = vV2mFE /h, we can express T in a standard form

(a2 +£2)°

.12
-————% sinh“ aa
4k20?

T l=1+

1 V¢ . a
T =1+ WO—E) sinh? (%\/Qm (Vo — E)) (17)

In this case E < Vj, classically the particle can not penetrate through the barrier - it will be reflected completely.
Quantum mechanics tells us that the particle has a probability to go through the barrier, the transmission coefficient
is nonzero. The process by which a particle can penetrate a classically forbidden region of space is called Quantum
Tunnelling (or Tunneling) Effect.

2m(Vo—E)

For very high and wide barrier, i.e., suppose that ca = / =—337—a > 1, we have

1
sinh ava = (e‘m — e_o‘a) = 560“1 > 1.

M| —

The transmission coefficient becomes

4k%a? 16k%a® .. —%aa 2m (Vo — F
T = eI 200, (=200 _ gy (—2 : (;2 )a>
1

It depends on the mass of the particle m, the barrier width a, and the barrier height V} sensitively. Gamow explained
the alpha decay phenomena by means of quantum tunneling effect (See Figure (18)). It is easy to generalize our
calculation to more complicated potential, the transmission coefficient, i.e., the ratio of probability current density of
transmitted wave to that of incident wave, is

b
T =exp (—2 / V2m (V(x) — E)dx)

B. Case II: Barrier penetration E > V)

In the case of E > Vp, we need to modify the definition (16) into

2m (Vo — FE
a:—m(o ):ik’

h

o )
h
so that
sinh aa = sinhik’a = isink’a

Correspondingly, we have (note k' < k)

T 4k2k/2
(k2 — k) sin® K'a + 4k2k"2
_ Vi . a
T 1:1+4E(EO—VO)Sm2(ﬁ 2m(E—VO)) (18)
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mY

FIG. 20: Transmission coefficient as a function of energy.

C. Case III: Bound states in finite potential well —V5 < £ <0

This is what we have learnt in Section V where we should define now 5 = 7%154-‘/0)

D. Case IV: Scattering from square well -V, <0< E

A potential well can scatter the particle and there is a finite probability for the particle to be reflected by the
potential well. This can not be understood in classical physics. In this case we simply change V; to —Vj and

2m (E + Vo) V2mE
Y e

k=
The transmission coefficient is
V2 a
T-1=1 70'2@\/2 E v) 19
+4E(E—|—V0)Sm 7 m(E+ V) (19)

It is clearly seen that for Vo = 0, i.e., k = &/, then T' = 1, we have the perfect transmission as expected. But for
Vo # 0 we generally have T < 1. This is essentially a quantum effect. For given potential well, the transmission
coefficient depends on the energy of the incoming particle as shown in Figure 20. Notice that T = 1 (the well becomes
transparent) whenever the sine is zero, which is to say, when

%\/2m (En+ Vo) =nm

where n is an integer. The energies for perfect transmission, then, are given by

n?m2h?

E, =—
n 0+ maZ

which happen to be precisely the allowed energies for the infinite square well. The discussion about resonant trans-
mission here applies to Case II equally.
We summarize this section in Figure 21.

Problem 6 Zeng Jinyan, Textbook, page, 80-84, 5, 10

VI. THE §-FUNCTION POTENTIAL
A. Bound states and scattering states

We have encountered two very different kinds of solutions to the time-independent Schrédinger equation:
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Case | Case Il Case lll Case IV

a=2m(V,-B /. k'=2m(E-V) /n

E—
A | Vv, B=Jam(E+V) /h k'=2m(E+Vy) /h
E—
E—
: X

|

B VI
T :1+msmh2(%d2nvo_E)]

2
T =1+V—°sin2(%,/ nE-V, )J

AE(E-V,)

V2 (a
Tl =1+—=2  sirt| =/ mE+V.
4E(E+V,) [h E °)j

FIG. 21: Barrier or well penetration: Transmission coefficients.

infinite square well hysicall, eneral solution
) d ) normalizable discrete index n p Y Y &
harmonic oscillator realizable states sum over n
free paticle non-normalizable continuous variable & non-realizable integral over k

In classical mechanics a one-dimensional time-independent potential can give rise to two rather different kinds of
motion. If V(x) rises higher than E on either side (Figure 22a), then the particle is ”stuck” in the potential well-it
rocks back and forth between the turning points, but it cannot escape. We call this a bound state. If, on the other
hand, E exceeds V(x) on one side (or both), then the particle comes in from ”infinity”, slows down or speeds up under
the influence of the potential, and returns to infinity (Figure 22b). We call this a scattering state. Some potentials
admit only bound states (the harmonic oscillator, infinite square well); some allow only scattering states (a potential
barrier, free particle); some permit both kinds, depending on the energy of the particle (finite square well, o-function
potential well).

As you have probably guessed, the two kinds of solutions to the Schrédinger equation correspond precisely to bound
and scattering states. The distinction is even cleaner in the quantum domain, because the phenomenon of tunneling
allows the particle to ”leak” through any finite potential barrier, so the only thing that matters is the potential at
infinity

E < V(—o00) and V(400) bound state
E > V(—00) or V(+00) scattering state

In the case of a cubic potential (Figure 22c), the classical bound state has got a finite lifetime (the eigenenergy is
E = Ey +1iT") because of the tunneling through the barrier and quantum mechanically it is a scattering state (though
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V(x)

- —— — —

Classical turning points

(@)

Vix)

Classical turning point

Vix)

Classical turning points

(c)

FIG. 22: (a) A bound state. (b) Scattering states. (c) A classical bound state, but a quantum scattering state.

we sometimes still call it a bound state).

B. From square potential to j-potential

Basically the square potential well or barrier is some kind of idealization of practical potentials. We can further
squeeze the width of the well/barrier to very small and depth to very high.

depth — —o0
11 Viz) = -Vod(z —
square we idth — 0 (x) 0d(z — a)
square barrier depjch oo V(z) = Vod(z — a)
width — 0

The Dirac delta function, é(x), is defined informally as follows:

5(96):{ 0, if 20

oo, if =0

+oo
| @it - e = 1(@. (20)

— 00

That’s the most important property of the delta function: Under the integral sign it serves to “pick out” the value of
f(z) at the point a.
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What happens in a d-potential (e.g. potential well)? Let’s consider a potential of the form
V(z) = =Vod(x — a)

The Schrodinger equation reads

L a) Vol — api(a) = Bud(a)
% (z) = —27% (Vod(xz — a) + E) ¢(x)

We integrate on both sides in a small range of = near a, in which case we can safely drop FE because V' goes to infinite

here
a+e a+e€
/ w//(m)dm = / <—2h;nV05(CC — a)zb(a:)) dz

Use equation (20) we have

Ylat o) —dla—e)=-0() (21)

Thus there is a sudden change in the derivative of the wave function.
On the other hand the wave function is continuous at a

a+

€ a a-+te
Pla+e€) —(a—e€) = ' (x)dx = Y (a — e)dx—i—/ Y (a+ e)dx

a—e a—c
:w’(a—e)-e—i—z//(a—i—e)fejoo

We notice that the boundary conditions in the J-potential model are

1. 9 is always continuous, and

2. di/dz is continuous except at points where the potential is infinite.

Introduction of §-potential = two interfaces combined into one = greatly simplified the mathematical procedure
= more easily to be handled = on the other hand, the information provided by this model is also limited
The Schrodinger equation for the §-function well yields both bound states £ < 0 and scattering states E > 0.

C. Bound states in ¢ potential well (F < 0)

The equation is now
h? d?
" 2m da?

where V(z) = =Vp0(z) and E < 0. In the region x # 0

Y(z) + V(z)y(z) = Ev(z)

n? d?
—%ﬁiﬁ(x) = E(z)
d> 2mE
(@) - (-2 ) vl =0
We definite the parameter o = y/ =22:£ so the wave function can be 1 (z) ~ exp(az) or exp(—az)

x <0, ¢Y(x)=Aexplazx)
x>0, ¢(x)= Bexp(—az)



Vi)

Ae™ E Be™

v(x)

FIG. 23: Bound states in § potential well (E < 0).

The boundary conditions say

A=B
2mV
—aB —aA = - 722014
which gives o = ";L‘Q/O, ie.
2mE m2V02
I
The energy may only take the value
Rl
2h?

The wave function

) Aexp(ax), forxz <0
vle) = { Aexp(—ax), for z >0

Finally we normalize v

+oo 0 +o0o
/ () Pdx = | A (/ e dx + / 6_2‘”’dm)
NS —oo 0

+o0 2
= 2\A|2/ e gy = AF =1
0 [0

SO

A=Va
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V Vix)

ikox

y(x)=A & +Be™ Fe

FIG. 24: Scattering states on § potential well (E > 0).

Evidently the delta function well, regardless of its ”strength” Vj, has exactly one bound state

0(@) = Y exp(mio a /12) (23)

which is illustrated in Figure 23. We notice that )(—x) = ¢ (x), thus the wave function has even parity. This also
excludes the odd parity bound states for delta function potential well.

D. Scattering states in d-potential well (E > 0)

What about scattering states, with £ > 07 The general solution for < 0 is
Y(z) = At 4 Be~ike

where k = QZEE is real and positive. For x > 0, we have
(@) = Fe
The boundary conditions that 1 is always continuous while di)/dz has a jump at x = 0 require that
A+ B=F
and
dip di .
— |+ = ikF —|_. =ik(A—-B
dx ’ dx ik( )
dp dyp 2mVp
/ Y _ &% e .
v —v(-0="F1L - ()
which means
ZmVO
ik(F—A+B)=— 2 F
F—A=igF
where we have defined 8 = %‘2} Finally
1
F= A
1—1ip
B= i
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Vix)=V &x)

FIG. 25: § potential barrier.

The reflection and transmission coefficients are

_Br_ s
AP 1R
_IFP
AP 1

Clearly R+ T = 1. In terms of the original variables, we have

1
R: e
1+ 2R2E/mV§
1
T

T 1+ mV2/2n’E

Obviously the higher the energy, the greater the probability of transmission.

The scattering wave functions are not normalizable, so they don’t actually represent possible particle states. The
solution lies in that we must construct normalizable linear combination of the stationary states, i.e., wave packets,
just as we did for the free particles. Tunneling of wave packets through a potential barrier is known as the Hartman
effect. Many numerical simulations can be found on the web.

E. J-function barrier

As long as we’ve got the relevant equations on the table, let’s look briefly at the case of a delta-function barrier
V(z) = Voo(z — a).
Formally, all we have to do is change the sign of V(. This kills the bound state, of course. On the other hand, the
reflection and transmission coefficients, which depend only on Vi, are unchanged. Strange to say, the particle is just

as likely to pass through the barrier as to cross over the well!

Problem 7 Griffiths, page 87, 2.44

VII. SUMMARY ON PART II

In very few cases, we can solve the stationary Schrodinger equation exactly and some examples are given in this
part.
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e Square potential well of width a: eigenvalues

n?m2h?

E, =
2ma?

inside the well, wavefunction has definite parity

{\/ECOS(TJJ), forn=1,3,5---

Un(z) =
\/gsin(%x), forn=2,4,6---

e Simple harmonic oscillator: eigenvalues

wavefunction

)= () () e (3?) oy T

e Penetration of potential barrier of width a: transmission coefficient

2m (Vo — FE
T ~ exp (—2 m(h02)a>

e § function potential: only one bound state

9(@) = Y0 oxp(-m¥p Je] /1)

transmission coefficient for ¢ function potential barrier

1
T=————
1+mVZ/2n2E
For finite square potential, one usually can find the graphical solution. The basic procedure in solving the one
dimensional potential is: assume reasonable solutions in different regions and connect them through boundary condi-
tions, i.e., the wavefunctions 1 is always continuous, and di/dx is continuous except at points where the potential is
infinite. There exists a jump there

2mV,

W(ate) —vla—a=-"3

¥(a).

The generic problem of quantum mechanics is: Given the time-independent potential V (z) and the initial wave
function ¥ (x,0), find ¥ (z,t) for any subsequent time ¢. We first solve the stationary (time-independent) Schrédinger
equation

B2 d24
“omdgz VYV

which yields, in general, an infinite set of solutions

Y1(x) Yo(x) Y3(x) ---
E Es E; -

We then fit ¥ (z,0) by writing down the general linear combination of these solutions

U (x,0) = Z cnthn ()
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and match the special initial state by appropriate choice of the constants ¢y, co, c3,---. The general solution is given
by simply attaching the time evolution factor

U (x,t) = Z cnn (x) exp (—iE,t/h)

which solve the time-dependent Schrédinger equation

v 2 9%V
nl%__120

o = omonz V@Y
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Lecture Notes on Quantum Mechanics - Part 111

Yunbo Zhang
Instituter of Theoretical Physics, Shanzi University

We introduce in this part operators for dynamical variables such as coordinate, momentum, etc.
Especially we deal with the angular momentum operator, and then find the quantized energy levels
for the simplest atom - hydrogen, by solving the stationary Schrodinger equation for a typical three
dimensional system.
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I. OPERATOR REPRESENTING PHYSICAL QUANTITIES
A. Operators

By dynamical variables we mean physical quantities that we are familiar in classical mechanics (Newtonian Mechan-
ics), such as coordinate, momentum, energy, orbital angular momentum, etc. The states of microsystems have been
proved to be wave motions and are described by wave functions ¥. What are the fate of these physical quantities?

e The formalism of wave function system and its statistical interpretation will inevitably lead to statistical an-
swers on the information of physical quantities, such as probability distributions, expectation values, standard
deviations, etc.

e The expectation values of coordinates and momenta have been deduced and are expressed as

@ = [[[ v @y 2 00 @02 dodydz,

(pz) = /// ¢" (P, Py D=) P2® (Das Py, P2) dpzdpydp

_ / / / W (2,9, 2) <ih§x> W (z,y, ) dedydz.

Thus, the idea of operators are introduced. The operator is a mathematical symbol to represent certain math-
ematical operation. If we want to know the expectation value of a physical quantity, we substitute the cor-
responding differential operator into the expression of expectation values. The operators of coordinate and
momentum are

9
ox’

T =z, Dr = —ih

respectively.

e Generalization: For any physical quantity F', called dynamical variable, there corresponds an operator F such
that

(F) = /// U (z,y, 2) Fp (x,y, 2) dedydz.

Here is how the operator F is obtained: write out the explicit form of physical quantity F' in Cartesian co-
ordinates, change the coordinate and momenta into corresponding operators. Thus the operator for energy
is

1
H=_—(pl+p5+p2)+V(2,y,2)

2m
1 A A A
:>2ml<—zhax) —|—(—zhay) —1—(—27182> +V(z,y,2)
B, .

The orbital angular momentum
L=rxp
and its components
Lo = yp. — 2py, Ly = 2ps — xp2, Lo = xpy — Ypa,

are changed into operators

=

Il
L
X
o



This, actually, constitutes the second Basic Postulate of quantum mechanics: All physical quantities are changed
into and are expressed by Hermitian operators. The introduction of operators to represent physical quantities in
quantum mechanics is of primary importance and has profound consequences.

Wave functions for states

Operators for physical quantities } cornerstones of quantum mechanics

B. The Hermitian operators

The basic premise here is that the expectation value of any real physical quantity must be real. Thus, it is required
that

so that,

/wﬁwd% = med%r
_ / (Fz/)) " pdir
thus this equation or equivalently in our short hand notation
(0.70) - (7.0

serves as a criterion to justify whether an operator may represent a physical quantity. Those that satisfy the above
criterion are called Hermitian or Hermitean operators, in the name of French mathematician Hermite.

Proposition 1 General criterion for Hermitian operators. If
/1/1*/11/}d3r :/ (Av) vae — (v, Ap) = (4p,v) (1)
for any state v, then there must be
[ widvads = [ (462) vads — (w1, Ava) = (A, va) (2)
Proof. First let ¢ = 41 + 19, Eq. (1) gives

(1 +202) A (w4 v)) = (A 01+ wa), (01 +42))

(w1, dun) + (1, A0s ) + (o, dun ) + (2, Avs )
= (/Ah/)lﬂlfl) + (1217/11,77/12) + (A?/Jzﬂ/fl) + (z‘i%ﬂ/)z)



and
(w1, Avsz) + (2, Aun ) = (Aun, ) + (Avs, 1) (3)
Then we set 1) = 1)1 + i1bo

((1/11 +itha), A (1 + iiﬁz)) = (A (Y1 +ivp2) , (Y1 + i¢2))
which leads to (¢ before the comma contributes a minus sign from the conjugation)
(%71‘11/)2) - (1/127211/11) = (141/)171#2) - (A7/)2,1/11) . (4)
The combination of (3) and (4) gives
(1, duz) = (Avr, ).
This will be viewed as a general criterion for Hermitian operators. m

Example 2 & =z and p, = fihd‘? are Hermitian operators while the differential opemtor L 4s not.

Solution 3 The coordinate = is real, obviously

(1, xp2) = (91, )2)

o) d oo

[ (‘”Zm) vade =it [ idus
::Aith¢2ﬁioA*C*ﬁUt/: (dv7) ¥
()
_ - 10 d ) d
_/_Oo <—Z dl’wl) 1/)2 xX.

where we have used the fact that both 11 and s are bound states so ¥ia|>, = 0. In short
(wlaﬁz'(/JQ) - (ﬁzwla wQ) .

On the other hand, A= % is not a Hermitian operator
N oo d o0
[vidinde = [ vigide = [ widu,
d
vl [ (B2) vads
-/ (—wl) bade
i / ( > Yodx.

For p,, we have

In this case, let A= %, B= dz, the above relation can be expressed in a form
| wthvsds= [ (Bur) puts

(1, Avs) = (Buor, i)

A and B are called conjugate operators. A= % is not a Hermitian operator, it has a conjugate operator B= di To
show the conjugate relation more clearly, B is written in a new form At For momentum operator, A = p, = Zhddx,

the conjugate operator is itself pl, = p,, P is called a self-conjugate operator. All Hermitian operators are self-
conjugate operators.



C. The eigenvalue and eigenfunction of a Hermitian operator

For a statistical problem, the first information we can draw from it are the expectation value
= / v Fopdir

and the variance

D= [ (F- ) vir

There exists a special case where the variance or standard deviation is exactly zero, i.e. all measurements of F give
the same result (F'). Using the Hermitian property of F', we have

D= [ (F-w) vt
:/¢* F—(F)) (F—<F>) $dPr
/‘ w‘ dr = 0.

The integrand (F - <F>> ¥ must be identical to zero, i.e.

for all r values.
In the language of quantum mechanics, if it is wanted that the a physical quantity has definite value, the system
must be in a state 1) that satisfies the equation

the above equation is called eigenvalue equation of operator a , while ¢ and (F') are called eigenfunction and eigenvalue
of operator F', respectively. A
Generally, given an operator F, there is a series of eigenfunctions and eigenvalues

Fwn = fnwn

Eigenfunctions and eigenvalues are one of the most important points in quantum mechanics. Up to now, we only
know that the eigenvalues of Hermitian operators are real. An immediate example is that the Schrodinger equation
is essentially the eigenequation for Hamiltonian H

D. The momentum operator

We already know that the momentum operator p
P = Xops + YOpy + Zop-
0 0 0
= _— .hi —_ h — hi
o (i) o (i ) +20 (i)
= —ihV

is a Hermitian operator. We are interested here in the eigenequation of the momentum operator. It is easily to show
that the eigenfunctions are nothing but the monochromatic plane waves

W= AetPT — Apt (Partpyy+p:2)



and it is easy to check

PY = (Xopsz + Yopy + 2opz)Y = pY

The eigenfunctions are free states, not bound states. So there exists a question of how to normalize them. It is
important here to distinguish the definitions of Kronecker delta d,,, for discrete numbers and Dirac delta § (x — y)
for continuous variables.

e /—normalization. We choose

1
A= —0pp,
(2mh)%/?
SO
1 £ (pez+pyy+p-2)
ETE.
and

* 1 L —p' Jz L —p’ ilp,—p )z
/Z/fp;p;p;?/}pmpypzdxdydz = (@nh)? ///eh(pz Py )e o7 (Py=p) v o (P2 —pL) drdydz
=0 (po — ;) 0 (py — 1}y) 6 (p= — L)
The eigenvalues p,, py,p. can change from —oo to 400 and the state is innumerable.

e Box-normalization: Consider a box of L? in space. Only waves confined is this box is considered. The wave
functions obey periodic boundary conditions

¥ (2,y,2) (x+L,y,z2)

=9
=1 (z,y+L,2)
:l/f(fﬂ,y,ZJrL)

For example

Aet Peztpyy+p=2) _ pot PeztpaLtpyytp=2)

which gives

p%L = ng2m, % = m,2m, p,;iL =n,2T
The eigenvalues are therefore discrete
2mh 2h 27h
px:an7 py:nyT’ pZ:nzT
where ng,ny,n, are integers 0,41,42---. Each separate state occupies a volume (QLLH)3 in momentum space.

For a volume Ap,Ap,Ap,, the mumbler of possible independent momentum eigenstate is

Ap,ApyAp.  Ap.Ap,Ap.L*  Ap,Ap,Ap.AzAyAz

(Q%ﬁ)3 (2mh)3 h3
which means that one quantum state occupies a volume h> in phase space. Thus, the eigenstates of momentum
become numerable. The normalization factor in this case is

1
VI3

The eigenfunction now has an explicit expression




FIG. 1: The spherical coordinates: radius r, polar angle § and azimuthal angle ¢.

which satisfy the normalization relation

// Up (r) Yp (r) dr® = Op.p!, 5pyp§, p=p, -
{L2}

1 L i 27h 1 L i L
1 / ehm-m2phog, _ 1 / eizmm—m)z/Ly — 5,
L J, L Jo

In the final result of calculation we will let L — +o0. If we discuss the normalization using the wave functions
in momentum space, the result should be

J][43 @)t 010" = .

{P3}
The integration is limited in a box in momentum space.
II. EIGENFUNCTIONS OF ORBITAL ANGULAR MOMENTUM

In this section we discuss the eigenfunctions and eigenvalues of another often used operator, the orbital angular
momentum.

A. Angular momentum operator in spherical coordinates

We already know that the classically defined orbital angular momentum L = r x p and its components are changed
into operators as



We define a new operator
LP=12+L+ L2

The angular momentum is defined in Cartesian coordinates, but is extensively used in spherical coordinates. Here we
first transform these angular momentum operators into spherical coordinates (Figure 1)

T = rsinf cos
y=rsinfsingp

z=1cosf

We notice that
0 _wo g0 020

8<p_8<p8x+8g06y+8g082

. . 0 . 0
= —rsinfsin wa— + rsin 6 cos cpa—
€T Y

00
N yax dy

which gives immediately the z-component of the angular momentum

ie.

The combination of the derivative with respect to 6

0 020 oyo 020
00  000x 000y 900z
0 .0 .
_rcosecosw%—i—rcosﬁsmg@a—y—rsm@&

and that with respect to ¢, i.e.
i——rsin&sin 2—|—7"sin(‘)cos 2
dp Y or “an

leads to

d .0 0 : 9
COS s — cotﬁsmgo% =rcosf— — rsmﬁcoscpa

Ox
_,0_,9
- Tox 0z
Appending the factor —ih we thus have
L, = —ih <cos cp% — cot fsin (‘088@) . (6)

By same token

L, =—ih < sin cp% — cot 6 cos @8(1) . (7)



The operator L2 can be derived from the square of the 3 components

. 0 0 0 0
L2_ 2 :
—h {(smgoae—l—cot@cosgoa )(s1n<p80+cot9008<pa )}

sin? goagz - bmzesmc,ocosgoa +2cot051ng0coscp898@
+ cot 6 cos? wﬁfcotzﬁsmgpcosgod + cot? 6 cos? gpd

9 cotbsingL O _ cotbsing
cos<p co smgo&p Cos g — €O smgoa(p

cos? 90602 + 511129 sin ¢ cos goa— — 2cot951n<pcosgoaeaf
+ cot  sin? goagJr(‘,o‘u2t9s1ncpcosg0(9 + cot? f sin® gaa

72— _ 25'72
z 6@2
one finally finds
[*=12+12+1L2

0 9 0 P
_ 52 2
=" <aa2 TR R )

i.e.

i ) 0 1o
2= -2 (2 (sing s
(sin9 26 (Sm ae) T o 8902> ®

The equations (5,6,7,8) are the spherical coordinate expression for orbital angular momentum.

B. Eigenfunctions of orbital angular momentum

Here we try to find the common eigenfunction of operators L? and L.. The operators have the differential operator
form expressed in spherical coordinates. The eigenfunctions Y (6, ¢) are also expressed in spherical coordinates with
their arguments 6 and ¢ changing in the domain

0:0—>m
p:0—=27

The eigenequations are

Y (0,0) = A7”‘L2Y(9 ?)

Y (0, ) = mhY (6, ¢)

where A\, m are some constants to be found. As always, we try again the separation of variables
Y(0,0) = 0(0)2(p),

then the equation for L,

L.O(O)2(p) = ~iliz-0(6)() = mhO(6)(y)

gives simply

(p) = exp(imyp). 9)



unit circle

FIG. 2: Change of variables £ = cos 6.

There could also be a constant factor in front, but we might as well absorb that into ©(6). As the azimuthal angle ¢
advances by 27, we return to the same point in space (see Figure 1), so it is natural to require that

(o + 271) = ()

In other words, exp(imp + im2m) = exp(imep), or exp(2mim) = 1. From this it follows that m must be an integer

m=0,+1,+2,---

For the eigenequation of ﬁZ, we substitute the explicit operator form into the equation

2
—52{ L 0 (sineggy(e,@)Jr L9 Y(9,<p)}:)\h2Y(6,<p)

sinf 90 sin? 6 57902

The second term in the equation can be replaced by

82 Y (0 o 82 Y . _ 2@9@
957 (’90)787@2( (0) exp(tmep)) = —m~O(0)D(p),

which reduces the original equation into

1 d (. ,do) m? B
- {smode (Smg do ) N sin20®(9)} =A8(0)

If you are familiar with the special functions, it is easy to recognize the solution of this equation is the associated
Legendre function P/"(cosf). Here we assume not very much knowledge about this special function and start from

10

the beginning. First we change the independent variable from 6 to £ by £ = cos 6. There is one-to-one correspondence

in this transformation (See Figure 2)

0:0—>m
E:1— -1
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The derivative is

d _ded . d
o — dode dé

Correspondingly, the unknown function ©() changes to P(£), and the equation becomes

2]+ (2o

or

AP dP m? B
-G -2+ (- g ) P

P(§) is defined in the interval (—1,1) with the two end points £ = +1 being singular points.

1. Series solution for m = 0 case

Let us first check the case of m =0

o, d?P  dP B
(1= €5 — 2 g +AP =0

We seek the series solution of the equation, i.e., presume P(£) can be expressed by a series of £
—+o0
P(E) = Z CV€V
v=0

It is easy to find the recursion formula

+o00 +o0 +oo
(1-¢% Z v(v—1)c, "2 = 2{2 ve, &7+ )\chf” =0
+oo v +oo Vzg-oo :—Z:
Zl/(l/— 1), 72— Zl/(l/— 1) e, & —QZVCl,ﬁy +)\ch§” =0
v=0 v=0 v=0 v=0

wv+2)v+1)cpg2—v(v—1)c, —2ve, + Ac, =0
w+2)w+Depro=wv—-14+2vr—ANec,

v +1)—=A
R YN IS b

i.e., knowing the two initial coefficients ¢y and c;, we can deduce the rest of them,

Co—>Cy —>Cqg —> -
Cl—>C3 —>C5 —> "

The infinite series P(&) diverges at £ — %1, so we have to truncate it. Let A = (I 4 1), then the coefficient ¢; # 0
while ¢j40 = ¢j44 = --- = 0. If [ is even, we choose ¢; = 0, if [ is odd, we choose ¢y = 0. This will kill the other series.
Thus we have found a polynomial solution of the equation

l

P(§) = ZCV€V

v=0

It is a result of truncation of a power series. The reason of truncation is the requirement that P(§) should be limited
at £ = £1, or, in spherical coordinate, the wave function should be limited at the polar points (Figure 3).
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=1 | Northpole

&=-1| Southpole

FIG. 3: Spherical coordinate: North pole and south pole.

The polynomial is called Legendre Polynomial, the general expression of it is (Rodriguez Formula)

P& = 211. H;Zl(é -1 1=0,1,2,--
with
Po(¢) =1
P(§) =¢
PyE) = (36 — 1)
Pe) = 5 (56" - 36)

The first few Legendre polynomials are illustrated in Figure 4.

2. Series solution for m # 0 case

The equation for m # 0 case reads
d dpP m?
—((1-)— (l+1)— —— | P(§) =0 10
& (=% )+ (-5 P (10)
We try to tackle this equation from two sides.
o Let P(¢) = (1 —£2)% Q(¢), substitute it into the above equation
d

Elo-o

o=@+ (10 - 5 ) - —0
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1.0

0.5+

o
o)

-1.0 -

FIG. 4: The first few Legendre polynomials.

A detailed calculation of the first term in the equation gives

jg{u —»:%d% [¢ —5%%(5)]}
~2la-efu-erf2 s na-eyroaq] |

d m 1 dl m
-2 {(1 -2 e - 52)262}

_ e @Q  m+2 2ym dQ
=(1-¢)=" ngJr 5 (1-¢&) (*25)676
m m m d
(1= €)FQ - me (1 - €)F (290 - me(1 - €)F 2
_ 2\ 2 2, d°Q dQ dq m?&?
-7 {a-) 92 - o+ 2652 - me S - mo+ 50}
_ 2\ z 2, *Q dq m*¢?
-7 {a-@) %2 < 2m+ el - mo+ )
In the equation we drop the factor (1 —£2)% on both sides
5 d2Q dQ m2€2 _ m2 B
and after simplification one arrives at
*Q dQ
(1_52)752 _2(m+1)5d?+ (1+1)—m(m+1)]Q=0 (11)

e For the case m = 0, the solution has been found to be the Legendre Polynomials P;(&)

2
(1- 52>j—52m5> - 25%3(&) LI+ DP(E) =0
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Differentiating this equation with respect to £ for m times (Leibnitz formula), we get

a2 dm d d? dm1!

(1- 52)@@13 (&) + m[d—f(l - 52)}@6157"_1 Pi(§)
1 d2 d2 dm72
+ §m(m - 1)[@(1 - 5%@@3(5)
d dm d d dm1! dm
- 2£d7§d§7mpl(§) + m[dfg(—%)]dfgmﬂ(f) + (1 + 1)@3(5)
)
After simplification, we arrived at
2 dm d dm
(1- 52)@[@}’1(@] —2(m + 1)5075[@131(5)]
0+ 1) = mm -+ 1) 5 O = 0 (12)

Eq. (11) and (12) are exactly the same, their solutions should be the same too. Thus, the unknown function
Q(&) are found to be

am am 1 d
~ a1 = gemlomag
1 dl+m
= ﬁdilﬁ[(g - 1)

Q&) (-1

The solution of Eq. (10) is the associated Legendre function (it is not polynomial for odd m)

P(e) = (1-¢2)% C;‘Z:lpl@
1 m dl+m

= 51— €)% frrm (€ 1))

where m can only take values 0 < 1+ m < 2[, i.e. —I < m <[ because the 2] times derivative of £ in the above
equation will give zero.

C. Eigenfunction of L. and f,2, the spherical harmonics

We begin with the task of finding wave functions in which the dynamical variables L. and L? have definite values

The steps are
(i) Separation of variables Y (0, ¢) = ©(0)®(p) where
D(p) = exp(imeyp), m=---—2,-1,0,1,2.--
(i) € =cos6,0(0) = P(£). For m = 0 case, it is found A = I(I + 1)
PE)=h(E), 1=01,2---

(iii) For m # 0 case, it is found A = [(I + 1) unchanged,

m d™
PO = (1-€)%

Fi(¢)
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Summing the above results up, the eigenfunction has the form

Y(0,¢) = 0(0)2(p) = P(cos 0) exp(imep)

m 1 dH—m
2111 d(cos @)+

Y (0,0) = (1 —cos?6) [(cos? B — 1)!] exp(imep)

Adding suitable normalization factor, the solution got a new name spherical harmonics

l—m prvt1 ., dtr _
Yim(6,¢) = (I+m) ir 2” d(cos 0)+m [(cos™ 6 — 1)'] exp(imep)

We discuss the eigenvalues and eigenfunctions below.

(i) Eigenvalues

L2Yi (0, 0) = 11+ D)i*Yim (0, 0), 1=0,1,2---
j/zY;m(97Q0) thYlm(QS@), m = _17_l+17"' ,0,1,"'l
Thus the angular momentum is quantized. [ is called the angular quantum number, while m is called the

magnetic quantum number. The relation of them can be seen from the definition of the spherical harmonics.
They can take the following values

[=0,m=0
l=1,m=-1,0,1
l=2m=-2-1,01,2

(ii) Eigenfunctions. The eigenfunctions of the orbital angular momentum are spherical harmonics Y;,,(0, @), the
first few of which are listed below

1
Yo0(0, ) = T
3 .
Y: 1(9 QO) 877'( lnaexp(z¢)
3 . .
Yi_1(0,¢) = gsm@exp(—ws)
3
YLO(QMP) = Ecos&
15
Y.0(0,¢) = %sm 20 exp(2i¢)
15 ‘
Ys 1(9 90) 87 IHQCOSL‘)exp(w))
T
5
Y20(0,¢) = Ton ——(3cos?H —1)
15 .
}/2,71(97@) \/S:Slnecosﬁexp(—z¢)

15 . .
Vo 2(0,0) = | 5 sin’ fexp(~2i0)

The spherical harmonics has already been normalized

// Y (0,0)Yim (0, 0)dQ = // Y (0,0)Yim (0, p)sin0dodp = 1

The spherical harmonics determines the angular distribution of the particle. For a function Y (6, ¢), the proba-
bility of finding the particle in certain direction is [V (6, ¢)|* dS.
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IIT. CENTRAL FORCE FIELD

A particle moves under the influence of a central-force field F(r) = F(r)f if the force on the particle is independent
of the angular position of the particle about the center of force and depends only on its distance r from the center of
force. Here, the magnitude F(r) (which is positive for a repulsive force and negative for an attractive force) is defined
in terms of the central potential V(r) as F(r) = =V'(r).

A. General properties of central force field problem

The Schrodinger equation H ¥ = E1 is now

h2
5 VUV ()Y =By (13)

where the potential energy V is a function of r only V' =V (r) and m is the mass of the particle. This equation will
be solved in spherical coordinate.
1. Separation of variables in central force field problem

1 é:a, you will find it is not quite easy to show that the Laplacian or Laplace

: £ 0 L 41D | 4
Starting from 7 = F5- + 0 55 + P55 5,
operator in spherical coordinate reads as

b 10,0\, 11 0 (o), 1 &
VT 2o or r2 | sind 09 09 sin? 6 0p2 [

The equation (13) can be written as

T2

0 0 L
(T26T’¢> +W’¢J+V(T)w:E¢

2mr? or

by means of the definition of L2, eq. (8).
We begin by looking for solutions that are separable into products ¥ (r,8,9) = R(r) Z (0, ¢). Inserting this into
the above equation leads us to

R d [ ,d L?
-z — (2= ——7 =(FE - Z
2mr? dr (T drR> * Rer2 ( VIR
dr dr
R4 (r2LR) +2mr?(E-V)R [2Z

ZﬁQi <T2dR) +2mr? (E-V)RZ = RL?*Z

R - Z
Clearly it should be a constant because the lhs depends on r only and the rhs depends on 6,p. This constant
should be [(I + 1)A? and Z is nothing but the spherical harmonics Y, (6, ) obtained in the above section, i.e.
L?Y,(0,0) = 1(1 + 1)h%Y},, (6, ). For the radial part we have

rf% (ﬂzﬁ) +2mr? (E - V)R =1(1 4+ 1)h*R(r)

2 12
R d (TQdR>+z<z+ )i

C2mr2dr dr 2mir?

R(r)=(E—-V)R

Thus we have successfully separate the variables as ¢ (1,0, ¢) = R (r) Y, (0, ¢) and are left with the radial equation

nod ( 2dR> . (l(l+ 1)h?

ComrZdr " dr 2mr2

+V (T)) R(r) = ER(r)

with the independent variable r changes from 0 to infinity.
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FIG. 5: The effective potential and the centrifugal potential.

2. Effective potential — the centrifugal potential

The radial equation is identical in form to the one dimensional Schrodinger equation, except that the effective
potential

I(1+1)h?
2mir?

contains an extra piece, the so-called centrifugal potential 1(I + 1)h?/2mr?. It tends to throw the particle outward
(away from the origin), and the same term also appears in classical mechanics (see Figure 5).

Meanwhile it is proportional to the square of angular momentum [(I + 1)A? so that for [ = 0, there is no centrifgal
potential. It only exsits for [ # 0. Particle moving with different angular momentum experiences different centrifugal

potential and has different radial equation. Thus it can be anticipated that particles with different angular momenta
have different solutions.

The solution of Schrédinger equation has definite angular momentum

+V(r)

¥ =R(r)Yim (0, ¢)
L* =11+ 1)h%y
L.y = mhy
We solve R (r) in the next subsection.

8. Change of variables

Let R(r) = u(r)/r, so that

£ pa () slpn
= L il (r) —ulr)) = " (r)
and hence

hrwm+<w+mh+vm>mr:Eum

2mr? 2mr? r T
R d? 1+ 1)R?
— %Wu(r) <(2mr; \% (r)) u(r) = Eu(r)
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This is also called the radial equation.
The resemblance of this equation with 1D Schrédinger equation is more evident. However, care should be taken on
the difference between them.

e For the radial wave equation the interval for the independent variable r is [0, +0o0]

e The radial wave function has the relation R(r) = u(r)/r, when r — 0, u(r) must tend to zero more quickly than
r.

B. Reduced mass

For a single particle, the wave function 1 (r,t) is a function of the spatial coordinates r and the time ¢. The wave
function for a two-particle system is a function of the coordinates of particle one (ry), the coordinates of particle two
(r2), and the time: v (ry,ro,t). Hydrogen atom is practically a two-particle problem, just as in classical mechanics.
The two-particle problem can be transformed into a single particle problem by introducing the reduced mass.

The spatial wave function 1 (ry,rs2) of hydrogen atom satisfies the time-independent Schrédinger equation

h2 h2
(- Vi _QmQV§> Y (ry,r2) +V (r,r2) ¢ (r1,12) = Etp (r1,712)

where m; and mso are the masses of the electron and the nucleon, respectively. We introduce the centre of mass
coordinate

R=———(mr mor
m1+m2( 11 + mars)

and the relative coordinate r = ro — r1. It is easy to check that

rr=R-— m27.r’ xl:X—7m2 x, etc.
mi + mo my + mo
r2:R+L'r, xngJrL:r, etc.
mi + mo my + mo
In terms of the new coordinates the derivatives are
0 _9X6 9208 __m 06 9
dr1  Or10X  Ox10r mi+medX Oz
o0 0X 0 ox 0O ma 0 0

D1y 072 0X 0wy 01 my+mydX | 0z
(o N, om0
or?  \myp+my/) 0X2 my +me 0X0x = Ox2 2my

P m Vo om0
8135_ mip+mo /) 0X2 mi +mo 0X0xr = Ox? 2meo

The kinetic terms are therefore expressed as

2my 0z  2mg Ox3
+ 0? h? 1 1 0?
— T 2 o4 (- ) (— 4 — | =
2 (my + ms) 0X 2 mi  ms /) Ox
_ e R tmy 0
2M 0X?2 2 mimo Ox2
92 K2 92
C2M OX2 24922
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The same thing happens for the other two components, in summary we have

K2 9 K2 2 K2 9 K2 9
2y 2my V2T Ton VR T, Vr
where we have defined the reduced mass and the total mass as

mimso

B=— M =my + my
m1—|—m2

Typically, the interaction potential depends only on the vector r = ro — r; between the two particles. In that case
the Schrédinger equation in the new coordinate system

n: ., R,
(=557 Vh 5.9 ¥ (Re) + V)0 (Ro1) = B (Rax)
can be solved by the method of separation of variables, i.e. we suppose

¥ (R,r) = ¢Yr(R)¢,(r)

Inserting this into the equation we have

7 TR R 0 0) ¢ = ) 4 Vi) )| U (R) = B (1) 0e(R)

—d VhVR®R) _ — 5 VR () + V()U(r) o
Yr(R) U (r) f

Obviously ¥ r(R) satisfies the one particle Schrodinger equation

h2
YYi Vi Yr(R) = Egyr(R)

with the total mass M = mj 4+ my in place of m, potential zero, and energy Fr, while 1,.(r) satisfies the one particle
Schrédinger equation

h2
gy Vi r(®) V(@) (x) = Bt (r)

with the reduced mass in place of m, potential V(r), and energy F,.. The total energy is the sum
E=FEr+E.

What this tells us is that the center of mass moves like a free particle, and the relative motion (that is, the motion
of particle 2 with respect to particle 1) is the same as if we had a single particle with the reduced mass, subject to
the potential V. Exactly the same separation occurs in classical mechanics; it reduces the two-body problem to an
equivalent one-body problem.

C. Spherical square potential
1. Infinite spherical well

First we consider the infinite spherical well

0, r<a
V(r)_{—&—oo, r>a

The wave function is separable
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FIG. 6: The infinite spherical well.

Outside the well the wave function is zero; inside the well the radial equation says

R d? I(1+1)R?
“om a2 (

+ V(r)) u(r) = Eu(r)

2mir?

where V(r) equals 0 inside the sphere, and only the centrifugal potential I(I + 1)h?/2mr? survives here. Thus

du (1+1) 9
where
2mE
e TR

as usual. Our problem is to solve this equation, subject to the boundary condition u(a) = 0. The case | = 0 (s-state)
is easy

d?u

7= —k?u = u(r) = Asin(kr) + B cos(kr)

But remember, the actual radial wave function is R(r) = u(r)/r, and cos(kr)/r blows up as  — 0. So we must choose
B = 0. The boundary condition then requires sin(ka) = 0, and hence ka = nm, for some integer n. The allowed
energies are evidently
2,252
n°nh
ETLO = W,TL: 1,2 3

the same as for the one-dimensional infinite square well. Inclusion of the angular part (constant, in this instance,
since Ypo = 1/+/4m), we conclude that

b=A

sin(kr
)y,

The normalization gives

/ / / P*rdrsin 0dfdy = 1
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|

u(r)
R(r)

(

{

f

Y00 Y00 Y300

FIG. 7: The first three 1y00.

o ( sin(kr) 2 . 9 .
A — Yoo Yoor=dr sin 8d0dy

= / A%sin? (kr)dr = A2%
0 2

so A =4/2/a and
1 sin(nzr/a)

2ma r

wnOO =

Notice that the stationary states are labeled by three quantum numbers, n,l, and m: Yu, (1,60, ¢). The energy,
however, depends only on n and I: E,g. We show the first three ¥, in Figure 7.
The general solution to equation (14) (for an arbitrary integer 1) is not so familiar

u(r) = Arjy(kr) + Brng(kr),

where j;(x) is the spherical Bessel function of order I, and n;(x) is the spherical Neumann function of order . They

are defined as follows
) 1d sinx
i) = (o) (3 )

x dx T
1d cos &
() = _(_m) (a: dx) T
For example,
. sinz _cosz
Jo(x) = no(z) =
. 1 d (sinx sma: cosT
Ji(x) = - -
x T

dx
li (cosa:)_ CcoS X sinz
md N

x 2 x
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and so on. Notice that for small x (where sinz =z — 23/3! +2°/5!--- and cosw = 1 — 22/2! + 2% /41 — ... )
o(e) = 1,mo(a) =~ =
x)~1,no(r) = —=
Jo » 10 -
. iy 1
jl(x)mg,nl(x)m—ﬁ

etc. The point is that the Bessel functions are finite at the origin, but the Neumann functions blow up at the origin.
Accordingly, we must have B = 0, and hence

R(r) = Aji(kr)
There remains the boundary condition, R(a) = 0. Evidently k£ must be chosen such that
jl(ka) =0

that is, ka is a zero of the [*" order spherical Bessel function. Now the Bessel functions are oscillatory; each one has
an infinite number of zeros. But (unfortunately, for us) they are not located at nice sensible points (such as n, or nm,
or something); they have to be computed numerically. At any rate, the boundary condition requires that

1
k= 7ﬁnl
a

I*" spherical Bessel function. The allowed energies, then, are given by

R,

nl

where B, is the n** zero of the

E, =
L7 9ma?

and the wave functions are
¢nlm (7’7 97 ¢> = Anljl (Bnlr/a)}/lm(ea ¢)

with the constant A,; to be determined by normalization. Each energy level is (2] 4+ 1)-fold degenerate, since there
are (21 + 1) different values of m for each value of I.

2. Finite spherical well

Consider now a particle of mass m is placed in a finite spherical well

—Vo, r<a
V(r):{ 0,0 r>a

We try to solve the radial equation with [ = 0 and find the ground state with energy —Vy < E < 0. The wave function
is again decomposed into

u(r)

Y= R(r)Yim = ., Yoo

where the radial part satisfies

h? d?

—%ﬁu(r) + V(r)u(r) = Eu(r)

In different regions we have

d2

dT; + k*u =0, r<a

d*u 5

i Bu =0, r>a
where we have defined

b= Qm(‘hfo + E)’ 5= th(fE)'
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FIG. 8: Finite spherical well and the continuity of u(r).

For r < a, u(r) = Asin(kr) (no cos as in the infinite case), while for 7 > a, u(r) = De™#" (no " term which blows
up as r — 00). The boundary condition at r = a gives

Asinka = Dexp (—fa)
kAcoska = —BD exp (—fPa)
which is
kacot ka = —pa.
Let £ = ka, n = Ba, so

—Ecot€ =1,
together with the restriction

2mV,

2 2 0 2 2

E + n= 12 a =Ty

which are exactly the same transcendental equation we encountered in 1D finite potential well. There is no solution
if ro < m/2, which is to say, if 2mVpa?/h? < 72 /4, or Voa? < w2h%/8m. Otherwise, the ground state energy occurs
somewhere between & = /2 and =

h2k%a? K2
E4Vo=t o L ¢
+ Vo 2ma? 2ma25
SO
h2n? K22

nn E o
8ma? < (Bo+Vp) < 2ma?

Remark 4 Advanced study material: 3D harmonic oscillator, Zeng Jinyan, Textbook, page 184, section 6.4 or problem
4.38 and 4.39 in Griffiths’ book.
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—e
(electron)

+e
(proton)

FIG. 9: The hydrogen atom.

IV. THE HYDROGEN ATOM

The hydrogen atom consists of a heavy, essentially motionless proton (we may as well put it at the origin) of charge
e, together with a much lighter electron (charge —e) that circles around it, held in orbit by the mutual attraction of
opposite charges (see Figure 9).

A. Radial equation and its solution

The hydrogen atom, or a hydrogenic atom or hydrogen-like ion with nucleus with charge Ze, is a typical central
force field problem. From Coulomb’s law, the potential energy (in ST units) is
1 Ze?
Vir)=-——2% (15)

dmeg T

The factor 1/4mweq will disappear in Gaussian unit system (For simplicity we use Gaussian unit in this section). The
radial equation is thus

B (zé ey,
2m dr? r 2mr? u=

Our problem is to solve this equation for u(r) and determine the allowed electron energies E. The hydrogen atom
is such an important case that we’ll work them out in detail by the method we used in the analytical solution to
the harmonic oscillator. Incidentally, the Coulomb potential (Equation (15)) admits continuum states (with E > 0),
describing electron-proton scattering, as well as discrete bound states (with E < 0), representing the hydrogen atom,
but we shall confine our attention to the latter (Figure 10).

Our first task is tidy up the notation. Let us make the equation dimensionless

1 n? d*u e Ze?  R2I(+1) 0
P E— D~ _—— u =
4(-E)) | 2m dr? r 2m 2

B2 d?u(r)+{1 1 Ze? K211+ 1)
8m(—FE) dr?

This suggests us to introduce

o = — ar = p
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FIG. 10: The bound states and free states in Coulomb potential.

(a is real for bound states F < 0) so that we get the dimensionless radial equation of hydrogen atom

$U(p)+{—i+ﬁ— l(Hl)}u(p) =0

P p?

(16)

where

aln () )

1. Asymptotic behavior of u(p) at singular points

e Next we examine the asymptotic form of the solutions. As p — +00, the constant term in the brackets dominates,
so (approximately)

The general solution is

u(p) = Ae™P/? 4 Ber/?
but e?/2 blows up as p — +00, so B = 0. Evidently

u(p) ~ Ae0/2
for large p.

e On the other hand, as p — 0 the centrifugal term dominates; approximately, then

dPu_ U(141)

dp? 02

u
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The general solution (check it!) is
u(p) = Cp'*t 4+ Dp~!

but p~! blows up as p — 0, so D = 0. Thus

for small p.

The next step is to peel off the asymptotic behavior, introducing the the new function f (p)

u(p) = p e P2 (p)

in the hope that f (p) will turn out to be simpler than u(p). We assume the solution, f (p), can be expressed as a
power series in p

Fp)=> byp
v=0

and

u(p) = e 2N byt

~7=0

2. Solution of the radial equation

We now solve the radial equation for hydrogen atom. Differentiating term by term

d*u d? {

S = {2 g b p"’HJrl}
2 2 ¥

dp dp =

2 > d _ d & e 2 &
— (dp2€ p/2> Z b/\/p'y+l+1+2 (Clpe p/Q) (@Zb7p7+l+l> +e p/QdT)QZ bA,p"’HH
v=0 v=0 v=0

The first item gives u(p)/4, which cancels the —u(p)/4 in equation (16). We are left with

oo (oo}
e PPS T ( FIH D) by e S (L 1) (y D) byt
~=0 v=0
+ Ber/? Z byt =11+ 1)e?/? Z by =0
~=0 ~v=0

Equating the coefficients of (y + 1) powers yields

by(B—y—1—=1)+byi [(Y+I+2)(y+I+1)—1(1+1)] =0

_ (v+1+1-75)
bmf(7+l+2)(v+z+1)—l(z+1)b7 (18)

This recursion formula determines the coefficients, and hence the function f (p): We start with by = A (this becomes
an overall constant, to be fixed eventually by normalization), and Equation (18) gives us by; putting this back in, we
obtain b, and so on.
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Now let’s see what the coefficients look like for large <y (this corresponds to large p, where the higher powers
dominate). In this regime the recursion formula says

bypr 1

by ¥

This means that the infinite series will converge to e” that blows up for large p and is not permitted by quantum
mechanics.

There is only one way out of this dilemma: The series must truncate. There must occur some maximal integer, n,
such that

bp,4+1=0
(and beyond which all coefficients vanish automatically).
bo = b1 — by — - = by, ?bnﬁl —
truncate here (n, may be 0,1,2,---)

From equation (18) we evidently have a compulsory condition for §

ny+l+1=4
Defining

n=ny+1+1
(the so-called principle quantum number) we have

B=mn

i.e., 8 must take positive integer values to truncate the power series!
Originally, we have no mind of the value of 3, it is dimensionless but the value of it is not known in advance.
Finally, the radial wave equation is expressed as

Ty
ulp) = Y b
~=0

while b,’s satisfy the recursion relation

— (y+14+1-n) b
T NI (v i+ ) =l +1)

B. The property of eigenstates
1. Energy quantization

B determines E through equation (17)

h \2(—F)
thus
_ Zldme | 21 &
 n22 B2 n22h2/me2
For hydrogen
o e? 1 (19)

2(10 n?
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where ag = h?/me? = 0.5294 is the Bohr radius. This is the famous Bohr formula — by any measure the most
important result in all of quantum mechanics. Bohr obtained it in 1913 by a serendipitous mixture of inapplicable
classical physics and premature quantum theory (the Schrodinger equation did not come until 1924). The ground
state (that is, the state of lowest energy) is the case n = 1; putting in the accepted values for the physical constants,
we get

e2

Ei=——=-136¢€V
2@0

Evidently the binding energy of hydrogen (the amount of energy you would have to impart to the electron in order
to ionize the atom) is 13.6eV. The energy level scheme for hydrogen atom is determined solely by principal quantum
number n

£y
For n = 2, the energy for the first excited state is
13.
By = —%W = —3.4eV.

2. Angular momentum and degeneracy

The spatial wave function can be explicitly written as

¢ = Rnl(r)yzm(gv 90)

with the radial function R,;(r) is dependent on both n and [. For the spherical harmonics Y, (6, ¢) we already know
that the eigenvalues of the angular momentum are quantized.

L¥Yin(8,) = L1+ 1) Y1 (6. )
L.Yim (0, 0) = mhYim (60, ¢)
However, we notice the relation between the quantum numbers
n=ny+l+1>101+1
For a given n, the possible values of [ are
1=0,1,2,--- ,n—1,
(the electrons are known as s,p,d, f,--- etc.) and for each [, there are (21 + 1) possible values of m,
m=-l,—l+1,--- 1

The spectrum is said to be degenerate if two or more linearly independent eigenfunctions share the same eigenvalue.
The number of linearly independent eigenfunctions is the degeneracy. Evidently in the case of hydrogen atom, the
energy levels depend only on the quantum number n and the other two quantum numbers [ and m are irrelevant.
The total degeneracy of the energy level F,, is thus

n—1

d(n) => (2l +1) =n

=0

The degeneracy will be removed if the spin orbital coupling be considered, which will be discussed later in this course.
Here we show the energy levels and transitions in the spectrum of hydrogen atom in Figure 11. Transitions to the
ground state, first excited state, and the second excited state are known as Lyman, Balmer, and Paschen series,
respectively.
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FIG. 11: The energy levels and transitions in the spectrum of hydrogen atom.

8. The wave function

We are dealing with the Schrédinger equation of hydrogen atom
R,
o V() Lo = By
m

Evidently the spatial wave functions for hydrogen are labeled by three quantum numbers (n, [, and m):

1 -
b= Rua(r)¥in(0,0) = e ™20 Y7 b p"Yinn (6,0)

=0
1
=~ P2 (bo +bip+ 4 b p) Vi (60, )
with
(y+1+1-n)
b»y+1 -

R I EY T (T

It is clear that the lowest power of p in R, is [, while the highest power is [ + n, = n — 1. The recursion formula
depends on both n and [. We go back to our original notation. Remember that p = ar thus

sm(—E)\'?  [fsm e 1\'? /4 1\Y* 2
o _(8me” 1N _ (4 1NTT 2
h2 h2 2agp n? a2 n? nao

which gives
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and
—1-1 I+
2 __r_ " 2r
Ry(r) = ——e ™ by | —
nl( ) nag Z v (Tlao)
v=0
Now we discuss the first few states.

e The ground state n =1, =0, i.e. 1s electron. We have

2bp _
R10 = —€ 9
Qo

and the constant by is found by normalization

/ Rigr’dr =1= %b(‘;/ e "ridr = agh? =1 = by = 1/ /ag
0 0

SO

It forces [ = 0, whence also m = 0

1\ 172 .1
Y100 = R10Yo0 = <3> 2¢” a0
Qg

Finally we obtain the ground state spatial wave function of hydrogen atom

1 =
Y100 =

Tag
This wave function has the following features.
1. It has spherical symmetry;

2. The amplitude exponentially decays with increasing r;

3. The probability for the electron to appear in district r — r 4 dr is

1 _2
P(r)dr = |¢100|2 Amridr = —e 20 dmr2dr
Tay
4

T
= —e “oridr
a
0

The most probable value of r occurs at r,,, determined by (the peak position in the distribution)

0 [ _2r
5(6 aor2):0:>rm:a0

(Generally for R,,; with [ =n — 1 we have r,, = nag, n=1,2,3,--+)

4. Normalization: Both R;y and Yo are already normalized, so

/// Vigo¥100d®r =/ R, (r) TQdT/ Y50 Yo0d2 = 1.
0

e The degenerate first excited state n = 2, [ = 0, i.e. 2s electron. The radial part

3/2
1 r __r
= —_— —_— 2a
Ry (7) (2a0> (2 a()) e 2
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FIG. 12: Graphs of the first few radial functions and the corresponding radial distributions for hydrogen atom.

forces I =0 and m =0, so
1
Yoo (0,¢) = Vi

These two gives the spatial wave function
3/2 .

2ag

1/)200 = \/E

The probability for electron to appears in district » — r + dr reads
2 2
! > e odr

P(r)dr = |thaoo|* dnr?dr = 8l (

The normalization is again automatically done
o0
/ / R} (r) Yoy Roo (1) Yoor2drdQ = / RZ, (r)r2dr / / Y Yoo sin 8dfdy = 1
0
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e The degenerate first excited state n = 2, [ = 1, in which case m = 1,0, —1, i.e. 2p electron.

1 3/2 r r
R ~ Zag
21( ) <2a0> \/gaoe 0

Then we have three wave functions

Yo1m = Ra1 (T)Ylm(aa SD)
with

We discuss here about the probability distribution in the case of hydrogen atom. We should be very careful about the
probability, which is not simply the square of the wave function. The radial distribution is defined as the probability
for electron to appear in shell » — r + dr (any direction)

P(r)dr = |Rpi(r)]> r2dr = |un (r)|* dr

while the directional distribution is the probability for electron to appear in the region 6§ — 6 + df and ¢ — ¢ + dyp,
i.e. d) = sin0dfdy

[Yim (6, 0)? dQ o | P (cos 0)] d

The normalization condition is always satisfied

// RY, (r)Yi% Ry () Yiur2dr sin 0d0do
2w
=/ RZ,(r 2dr/ / Y5, (0, 0)Yim (0, ) sin d0dp = 1
0

We show the first few wave functions and the corresponding radial distributions in Figure 12.

4.  Summary on the quantum numbers

The Bohr model was a one-dimensional model that used one quantum number to describe the distribution of
electrons in the atom. The only information that was important was the size of the orbit, which was described by
the n quantum number. Schrédinger’s model allowed the electron to occupy three-dimensional space. It therefore
required three coordinates, or three quantum numbers, to describe the orbitals in which electrons can be found.

The three coordinates that come from Schrodinger’s wave equations are the principal (n), angular (1), and magnetic
(m) quantum numbers. These quantum numbers describe the size, shape, and orientation in space of the orbitals on
an atom. For the election of the hydrogen atom, its energy eigenstate is expressed by the wave function ¥,

1l)nlm = Rnl (T)}/}m (9a SD)

e The principal quantum number (n) describes the size of the orbital. Orbitals for which n = 2 are larger
than those for which n = 1, for example. Because they have opposite electrical charges, electrons are attracted
to the nucleus of the atom. Energy must therefore be absorbed to excite an electron from an orbital in which
the electron is close to the nucleus (n = 1) into an orbital in which it is further from the nucleus (n = 2). The

principal quantum number therefore indirectly describes the energy of an orbital.
2
es 1
E,=———
" 2a¢ n?

e The angular quantum number (I) describes the shape of the orbital. Orbitals have shapes that are best
described as spherical (I = 0), polar (I = 1), or cloverleaf (I = 2) (Figure 13). They can even take on more
complex shapes as the value of the angular quantum number becomes larger.
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FIG. 13: The angular quantum number describes the shape of the orbital.
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FIG. 14: The magnetic quantum number describes the orientation of the orbital.

e There is only one way in which a sphere (I = 0) can be oriented in space. Orbitals that have polar (I = 1) or
cloverleaf (I = 2) shapes, however, can point in different directions. We therefore need a third quantum number,
known as the magnetic quantum number (m), to describe the orientation in space of a particular orbital. (It
is called the magnetic quantum number because the effect of different orientations of orbitals was first observed
in the presence of a magnetic field). For example, there is only one orbital in the 2s subshell. But, there are
three orbitals in the 2p subshell because there are three directions in which a p orbital can point. One of these
orbitals is oriented along the X axis, another along the Y axis, and the third along the Z axis of a coordinate
system, as shown in Figure 14. These orbitals are therefore known as the 2p., 2p,, and 2p, orbitals.

Problem 5 Zeng Jinyan, Textbook, page 190, 4,5,6

V. SUMMARY ON PART III

The state of a particle in quantum mechanics is described by a wavefunction 1, while the physical quanti-
ties/observables prove themselves differential operators acting on the wavefunction. Writing out the explicit form
of physical quantity F' in Cartesian coordinates, changing the coordinate x and momentum p into corresponding
operators & and p, = —ihd/Ox, we get the operator F(x,—ihd/dz) with expectation value

(F) = / Y* Fydsr
All physical quantities are changed into and are expressed by Hermitian operators, for which there is a general criterion
(¢171‘i¢2) = (z‘Wh%)
Given an operator F, there is a series of eigenfunctions and eigenvalues

Typical examples of Hermitian operators are the position &, the momentum operator p, the Hamiltonian operator
H, and orbital angular momentum L = # x p. The eigenfunctions of & and p are g,(z) = 6(z — y) plane waves

P = Ae#PT and the latter can only be normalized by d-normalization or in a box.
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The quantum mechanics in three dimensional depends heavily on the properties of angular momentum L. The
operators L2 and L, share common eigenfunctions

LY (0,¢) = 11+ DR2Yim (0, ), 1=0,1,2-
L.Yin (0, ¢) = mhYi (0, 0), m=—l,—l+1,,0,1,--1
where ¥}, (0, ¢) are spherical harmonics. For m = 0, they reduce to the Legendre polynomials Yjo (6, ¢) =

P!(cos
In a central force field, the solutions are separable into products of a radial part and an angular part ¢ (r, 6, )
R (r)Yim (8, ). The radial wavefunctions satisfy the radial wave equation

g

2m dr2 a2\ 2mr?

L (l““mwm) u(r) = Eu(r)

where we have changed the variables such that R(r) = u(r)/r and the additional term I(I + 1)A?/2mr? in the effective
potential is known as centrifugal potential. We can solve the equation for spherical square potential with infinite or
finite barrier height. The solution for infinite spherical well for arbitrary [ contains spherical Bessel function

wnlm (T7 97 ¢) = Anljl (5nlr/a)5/lm,(0a d))

For finite potential well, we got exactly the same transcendental equation as we encountered in 1D finite potential
well, which permits no solution if Voa? < 72h?/8m.
The stationary states in Coulomb potential

1 Ze
471’60 r

V(r) =

gives us the energy levels of hydrogen and hydrogen-like atoms. For the election of the hydrogen atom, its energy
eigenstate is expressed by the wave function

1pnlm = Rnl (T)Yim (97 SD)

Solving the radial equation

C2modr? r 2mir?

2 2 2 2
0 du (_Ze l(l+1)h>u:Eu

by truncating the series to finite terms, we get the energy quantization condition - the Bohr’s formula for hydrogen
atom

ez 1

2a¢ n2

E=-—

The ground state of hydrogen lies —13.6eV beneath the zero potential point and the wavefunction is

1 o .
¢1oo = 3 e 9o, apg = 0.529A
Tag

The degeneracy of the energy level E,, is n?. The principal (n), angular (I), and magnetic (m) quantum numbers

describe the size, shape, and orientation in space of the orbitals on an atom.
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In this part we introduce the other formalism of quantum mechanics - the matrix mechanics
developed by Heisenberg. To do this we need some basic knowledge on linear algebra and operator
arithmetical rules. Three essential properties of the eigenfunctions of the Hermitian operators
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I. OPERATORS AND ITS ARITHMETICAL RULES
A. Hermitian operators

Operators are introduced in quantum mechanics to represent dynamical variables. There exists one-to-one corre-
spondence between dynamical variables (physical quantities) F' and operators F'. Here we review some basic concepts
by raising some questions.

e How is the operator obtained? Answer: Any physical quantity can be expressed in Cartesian coordinate
F(z,y, 2, ps, Py, Pz), One gets the operator by simply replacing the position and momentum by the corresponding

operators F(Z,§, 2, Pz, Dy, Pz )-

e What is its function? Answer: Given the state of the system 1), the expectation value of the physical quantity
can be obtained through (F) = [ ¢*Fydsr.

e What is a Hermitian operator? It means that (F') must be real. There is a general criterion for Hermitian

operator (wl,ﬁ’wz) = (F’(/J17¢2).

e Can we know more than the expectation value? Yes, For a special kind of states which satisfies the equation
Fipy, = fatbn, we have <(AF)2> = 0. This is the eigenequation of F'.

e Are only Hermitian operators prevail in quantum mechanics? No, in quantum theory different kinds of operators
are used, many of them are not Hermitian (but intimately related to Hermitian operators). A typical example

is A=d/dx.

In summary, there is a special class of operators which are called Hermitian operators. They are of particular
importance in quantum mechanics because they have the property that all of their eigenvalues are real (proved later).
This is convenient for the measurement outcome of any experiment must be a real number. There are non-Hermitian
operators, but they do not correspond to observable properties. All observable properties are represented by Hermitian
operators (but not all Hermitian operators correspond to an observable property).

B. Multiplication of operators - the commutator

Here we define the algebraic manipulation of operators. The meaning of multiplication of operators A and B is
that two operators act successively on a wave function

ABy = A (Bw)

in this sense the multiplication is order-concerned! The commutation relation is the difference of acting results. Here
are some examples:
The most important and fundamental one is the commutator between & and p,. For arbitrary state v we have

TP =z (—ihi) Y
DaZ = (—zﬁ(i) (x)) = —ilp + x (—zh(i) .
The difference of acting results
(Zhe — Do) tp = ila)
is irrelevant with the choice of state, thus
Epe — put = ih

We say that operators & and p, do not commute (are non-commutative) and obey the above commutation relation,
or, in other words, the commutator between & and p, reads

(@, a] = ih



Take another example, £ and p,. Clearly

0
Tpy, v =x (—zh) )
Y (9:1/
Dy T = —ihﬁ (xy) = —ih— | ¢
Pt = y - ay) "
(#hy — Byi) ¥ =0
or
[ﬁjaf)y] =0
We say that operators & and p, commute each other (are commutative).

For any two operators A and B, we can calculate the commutation relation between them [A, E} . For example,

s

Il
=2
~
<
|
~
<
2>
Il
>
o
=3
8
|
=
3>
n
|
—
N>
=B
8
|
8
3
n
~—
SN

éi'pm - ‘%Qﬁz - 2ﬁz‘% + i'ﬁzjj =z (iﬁz - ﬁxi') = ihz

Z and ﬁy are non-commutative. Generally, we can see that the operators obey a non-commutative algebra.
There is another question about the Hermiticity of the product of two operators.

Proposition 1 The product of two Hermitian operators are generally not Hermitian, unless they commute each other.

Proof. The Hermitian operator A satisfies
(v1. 4wz ) = (A1) or AT= A

The product of A and B, however

(¢1,AB¢2) - /zpf/i (B@) dr :/ (Awl) (sz) dr
= / (BTAT%) Yod’r = (BTAT%,%)
ie.
~ N\ T PN N

(4B) = BAT = BA
That means, the Hermiticity of A and B can not assure the Hermiticity of their product AB. The product operator
AB is Hermitian only if

BA=AB

ie. [A, E} = 0. The operator L, = 9p. — 2Py is composed of 4 Hermitian operators, all of them are Hermitian,

and in the products 9 and p., £ and p, are commutative, respectively. Thus L, is Hermitian. By the same token,
L? =12 + L2 + L? is Hermitian, too. m

Now we calculate the commutation relation between the components of the angular momentum. Till now we have
met several vector operators, X, p and L. The components of X, p are commutative evidently

[Z,9] = 0, ete.
[Pz, By] = 0, ete.
The operators L, and fLy do not commute, in fact
(Lo L) = (@62 = 26,) (2bo — @2) = (25s — 252) (36 — 2B,)
= P22z — UP2EP: — ZPyZDa + ZPyip.
— ZPpaypz + TP2YP: + 222Dy — TD2EDy
= G [D=+ 2] + Dy [2,9:] = ih (8D, — §bs) = ihL.



Of course, we could have started out with {IA% ﬁz] or [I:m, IA/Z}, but there is no need to calculate these separately -

we can get them immediately by cyclic permutation of the indices (Z — §,9 — 2,2 — &)
|LosLy| = inL.
[ﬁy,ﬁz} =ihL,
Lo, L] = inl,

or
{ia, i/g} = iheagﬂ/i,y
with e, the Levi-Civita permutation symbol. It is an anti-symmetric tensor rank 3 defined as

€apy = T€Bay = ~Cayp
€ryz = 1, €40, = 0, etc

They are the fundamental commutation relations for angular momentum; everything else follows from them.
On the other hand, the square of the total angular momentum

[P=12+L2+12

does commute with L,

=Ly [Ly, Lo] + [Ly, Ba] £y + Lz [Le L] + [L2 L] s
= Ly (=ibL.) + (=ihL.) Ly + Leinly +ihl, L.
=0
where we have used the result of Problem in the following. It follows that
[ﬁz,fm} =0, a=1zY,z
Problem 2 Define
e =iy +il,

Show that
[EZ,Ei} = +hl.
[L,E_} = 2hL.

One can manipulate the operators in many ways, such as summation, product and more generally, given a function
F(z), the power series converge if the derivatives are well defined

—+oo
FM0)
n=0 ’

the function of operator Ais expressed as

n=0

n!

Specially for F(z) = e** one may define

d g Ramd
Fl=)=eode =S 22
<dm> “r Z n! dzn

n=0



Problem 3 Show that the expectation values of L, and ﬁy in any eigenstate of L. are zero. (Zeng, p133, 13)

Problem 4 Prove the following commutator identity

Show that

and more generally that

for any function f(x).

II. GENERAL PROPERTIES OF EIGENVALUES AND EIGENFUNCTIONS OF HERMITIAN
OPERATORS

A. Background

We have learnt many eigenfunctions of Hermitian operators:

e For 1D momentum, the eigenfunction is

R . d
Dz = _Zhdiqﬁ = Pyt
X

where p, is the eigenvalue and the eigenfunctions are chosen such that they can be d-normalized

1
Uy, (z) = \/ﬁehm

where —o0o < p, < oo i.e. the eigenfunctions are innumerable. The 3D momentum eigenfunction takes a similar

form

Py = —ihVi) = (Xopz + Yopy + 20p2)Y) = PY

and the eigenfunctions are

Y = 1 e# (P2x+pyy+p=z)

(27h)3/2
e We have also solved the eigenfunctions for the square of angular momentum and its z-component

L%, = 11+ 1)R2Yy,

with the eigenvalues | = 0,1,2,--- and m = —[,—l + 1,---1 and the eigenfunctions are spherical harmonics

e The other example of eigenvalue problem is the eigenequation of Hamiltonian operator, the stationary

Schrédinger equation

den = Enwn

Typical exactly solvable models include the simple harmonic oscillator, square potential well, hydrogen atom

etc.



These examples provide us the information of micro-particle in concrete conditions and play important role in
the construction of the theoretical frame of quantum mechanics. In this section we discuss the general property of
eigenvalues and eigenfunctions of Hermitian operators.

The spectrum of eigenvalues of Hermitian operators fall into two categories: If the spectrum is discrete (i.e., the
eigenvalues are separated from one another) then the eigenfunctions constitute physically realizable states. If the
spectrum continuous, (i.e., the eigenvalues fill out an entire range) then the eigenfunctions are not normalizable, and
they do not represent possible wave functions (though linear combinations of them - involving necessarily a spread in
eigenvalues - may be normalizable).

a Some operators have a discrete spectrum only (for example, the angular momentum, the Hamiltonian for the
harmonic oscillator, square potential well of infinite depth),

b some have only a continuous spectrum (for example, the free particle Hamiltonian, the 1D and 3D momentum
operators),

¢ and some have both a discrete part and a continuous part (for example, the Hamiltonian for a finite square
well, the spectrum is discrete for £ < Vj and continuous for E > Vj; the Hamiltonian for the system of nucleus
plus electron, the energy spectrum for hydrogen atom is discrete for £ < 0 and continuous for the scattering of
electrons FE > 0)
The essence of theory to be developed is the same for the three cases, but more tedious for the third case. We will

presume that the eigenvalues of the system would be entirely discrete here and discuss the situation of continuous
spectrum later through some examples.

B. Reality of eigenvalues

Mathematically, the normalizable eigenfunctions of a Hermitian operator have the following properties:
Theorem 5 Their eigenvalues are real.

Proof. Suppose
me = fm'l/}m

Multiplying v, from the left, and integrating over entire space, we see

[ i (P = fuon) s

fn= [ Fvndr= [ (Fon) vnd's
— [ ton)" dmd's = 1,

where we have used the property that F is Hermitian and Uy, 1s normalized. Evidently f,, are real for all Hermitian
operators. m

C. Orthogonality of eigenfunctions

Theorem 6 Two eigenfunctions of the same Hermitian operator with different eigenvalues are orthogonal. Suppose

F¢m = fm¢m
F"/}n = fnwn

where fo, # fn. Orthogonality means

/ U Ynd’r =0



Proof. [ is a Hermitian operator, so
/%/ffnﬁz/fndg’r = /w;ﬁwnd%
gives
fn / Vi nd’r = frn / Uy nd’r
ie.
—fn) / UmtPnd’r =0

Because (fm, — fn) # 0, it must be that [} ¢,d’r=0. m

1. Examples of orthogonality

Two stationary states with different energy values of the Schrédinger equation are orthogonal, i.e.

Hp = Bt
Hip, = Enthy,

Jffsoare=s

Spherical harmonics with different indices are orthogonal, i.e.

// Vi VindQ = 0,1 £ 1/

/ Y Vi dQ = 0,m # m’

Orthogonality is for different eigenvalue states, while normalization is for the same state. The combination of them
is called orthonormality.

[ vi@ne)a’s =, )
For example we can write the orthogonality and normalization of spherical harmonics into
[ 750,00 0,09 = 6

If the spectrum of a hermitian operator is continuous, the eigenfunctions are not normalizable, and the proofs of
the above two Theorems fail, because the wavefunctions are not square integrable. For example, the eigenvalues of
1D momentum are real and the eigenfunctions satisfy

1\ 1 i
enP*® en?® ) de =6(p—1yp
/ ( 21h ) ( 2mh ) (p=»)

/w )y ()dz = 5(p — ) 2)

ie.

which is strikingly reminiscent of true orthonormality equation (1) - the indices are now continuous variables, and
the Kronecker delta has become a Dirac delta, but otherwise it looks just the same. Equation (2) is called Dirac
orthonormality.



2. Degenerate case

We here discuss more about the degeneracy of the energy spectrum of Schrodinger equation. If two (or more)
distinct solutions to the (time-independent) Schrodinger equation have the same energy F, these states are said to
be degenerate. For example, the free particle states are doubly degenerate — one solution representing motion to the
right, and the other motion to the left. But we have encountered no normalizable degenerate solutions, and this is
not an accident. We have the following theorem:

Theorem 7 In one dimension there are no degenerate bound states.

Proof. Suppose there are two solutions, ¢; and ¥y, with the same energy FE.

h2 d2y

e TV = By
h2 d?o
o ggr T VY2 =Eve

Multiply the Schrodinger equation for i1 by %2, and the Schrodinger equation for 1o by 1,
dzwl

—*1/)2 + Vapatp1 = Epaihy

2
——%d 1/’2 + Vot = Expythy

and subtract, we have

2 2 2
h <¢2d 2! 1/)1dd;p22) =0

But

2
<¢2dw1 1/11dw2> :¢2d o 1/11d Vs

dx? dx?
it follows that

i

wzf - ¢1 de

=K

where K is a constant. For normalizable solutions 1) — 0 at x — oo, this constant is in fact zero. Thus

d% d¢2 Ld 1 dipo
¢2 wl ¢1 dr Uy dz

SO
In 4 = Inwg + const. = 1p1 = (constant) 1y

and hence that the two solutions are not distinct. m

Imagine now a bead of mass m that slides frictionlessly around a circular wire ring of circumference L. This is just
like a free particle, except that 1(x) = ¢¥(x + L), since x + L is the same point as z. We try to find the stationary
states (with appropriate normalization) and the corresponding allowed energies. From the equation

Ree

2m dx?

where x is measured around the circumference, we immediately know the solution is

() = Ae’t® 4 Bem k=+/2mE/R?.

The boundary condition gives

AeikweikL +Be—ikwe—ikL _ Aeikx +Be—ik7;7
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and this is true for all z. In particular, for x = 0

Ae*l + Bem*t = A+ B (3)
And for x = 7 /2k

Aei™/26ikL | Be—im/2,—ikL _ pgim/2 | po—in/2
AethL 4 Be—ime—ikL _ 4 4 pe—im

or

Ae'kl — Bem*L — A - B (4)
Add (3) and (4)

Akl — A

Either A = 0, or else e’*’ = 1, in which case kL = 2n7(n = 0,41,42,---). But if A = 0, then Be~** = B, leading
to the same conclusion. So for every positive n there are two solutions:

’L/J+(.’L‘) — Aei(ZnTrac/L)
w— (x) — Be—z’(2n7rm/L)

The two independent solutions for each energy E,, correspond to clockwise and counterclockwise circulation (n = 0 is
ok too, but in that case there is just one solution). Normalizing

L
)P dr = _p-_L
/0‘1/1 (z)] dx—1:>A—B—\/z

Any other solution (with the same energy) is a linear combination of these

w:l: — ieii(anx/L)

n \/E
RPE% 2n2n?R?
En=o =z = 0h2

How do we account for this degeneracy, in view of the theorem — that is, why does the theorem fail in this case? The
theorem fails because here 1) does not go to zero at co; x is restricted to a finite range, and we are unable to determine
the constant K.

Problem 8 Consider the operators

A d 4 d?
=i— = —
Q=igs @ =m
where ¢ is the usual polar coordinate in two dimensions. (These two operators might rise in a physical context if

we were studying the bead-on-a-ring.) Are Q1 and Qo Hermitian? Find the eigenfunctions and eigenvalues. Are the
spectra degenerate?

It is always possible to reshuffle these degenerate states so that they are normalized by themselves while orthogonal
to other (the rest) states. Here is an example on how to construct the orthogonal eigenfunctions from the degenerate
states.

Example 9 Suppose that f(z) and g(x) are two eigenfunctions of an operator Q, with the same eigenvalue q

Qf=af
Qg =4qg
It is easy to show that any linear combination of f and g

hz) = af(x) + by(x)
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(for arbitrary constants a and b) is itself an eigenfunction of Q, with eigenvalue q

Qh = Q (af +bg) = aQf +bQg = aqf + bqg = qh.

For example, f(x) = e® and g(x) = =% are eigenfunctions of the operator d?/dx?, with the same eigenvalue 1

d? az "

w2l T ==

d? o, 2
a2? =gt — e =g

The simplest orthogonal linear combinations are
: 1 T —x 1
smhx:§(€ —e )=§(f—9)
1, . . 1

cosh:z::i(e +e ):§(f+g)

They are clearly orthogonal, since sinh x is odd while cosh x is even.

D. Completeness of eigenfunctions

For a 3D space, three basic vectors xq, yg and zy form a orthonormal basis. Any vector can be expressed as a linear
combination of the them. They are “complete”. If one of the basic vectors is missed, we can no more express all the
vectors through the basis. They are “incomplete”.

A periodic function f(z) of period L can be expanded into a Fourier series

> 2nm > 2nm
flx) = ;an cos —— + ; by, sin -

thus the function set {cos 2”T’rac,sin Q"T’Tx} serve as a basis and are used to express periodic functions. They are
complete. If one of the above basis, say cos %’TJ:, is missed, they are incomplete and can not express arbitrary periodic

functions at will.

1. Completeness of the eigenfunctions of momentum operator

As an example, we discuss here first the completeness of the eigenfunctions of 1D momentum operator p, = fih%,
Uy () = ——ch?”
v 27h

The set {¢, (z)} with —oo < p < 400 are complete, i.e. any wave function can be expanded as a superposition of
¥y (x)’s.
1 i
enP?dp = / x)d
= [oweian= [ 0@ v, @

This is nothing but the Fourier transformation between x and p spaces. Inversely, we have

1 N e #Pe go! — “ (2 (2 da’
¢<p>:%/w<x>e d —/%( Y (') d

¥ () =

SO

¥ (z) = / dpo (p) ¥p (2)
~ [an([asv; )6 @)) v to)
= [ { [ dvus )0, )} o)

= /dm’é (2" — )9 (2)
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The completeness of ¥, (x) with p a parameter can be expressed as

/ dp (') ¥y () = 8 (' — @)

i.e.

1 i1 i 1 i /
e nPb? eirrdp = — [ eir(e=a')g
/ oh N e p

=d0(z' —x).

2. Completeness of spherical harmonics

The spherical harmonics {Y,,, (6, )} are complete. Any function F' (6, ) can be expressed as a superposition of

spherical harmonics
- Z Cl,myrlm (07 4)0)
l,m

The coefficients are

P / / Vi, (0.0 F (0, o) dSY

Put it back we have

//Zylm ) Yim (0.) F (0, ) dSY

=/ 5(0-0)5(p— @) F (0. ") 2
therefore the completeness of spherical harmonics is expressed as

Z}/Zm y P lem(ago):(s(efol)(s(w*@/)

3. Completeness of eigenfunctions of discrete spectrum

Let us check the completeness of eigenfunctions for a simple harmonic oscillator
U, (x) = Nype 2" [, (ax)

with o = /5. {9y} is complete. Any state of simple harmonic oscillator can be expressed as a superposition of

Pn’s
= Z anwn (LC)

0= [ @) v ) o

Z/w ') el ()
- / S @) ()Y (@)
:/5(x’fx)1/)(x/)d:c/

and

We have
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which gives us

D W @) (2) = 6 (2) — )

n

This can be generalized to the complete set of eigenfunctions {u, ()} of a certain operators F

Fun (.’1?) = fnun (aj)

{uy, (z)} is complete in that any function of the same kind can be developed upon {u, (x)}
¥ (z) = Z Cntin ()
n

with

The completeness of {u,, (x)} is expressed as

> up (@) up (x) = 6 (27 — x)

4. Summary

The property of completeness is essential to the internal consistency of quantum mechanics, so (following Dirac)
we will take it as an axiom (or, more precisely, as a restriction on the class of Hermitian operators that can represent
observables/dynamical variables)

Axiom 10 The eigenfunctions of an observable operator are complete: Any function can be expressed as a linear
combination of them.

III. GENERALIZED STATISTICAL INTERPRETATION AND UNCERTAINTY PRINCIPLE

We have learnt how to calculate the probability that a particle would be found in a particular location
t(2)|? dz: probability between x and z + da

(position measurement), and how to determine the expectation value of any dynamical variables. In the section
about generic problem in quantum mechanics, we have also learnt how to find the possible outcomes of an energy
measurement and their probabilities

A +OO
Hwn = n¢m <H> = Z |Cn|2En
n=1

probability of getting E, — |c,]”

We are now to state the generalized statistical interpretation, which subsumes all of this and enables you to
figure out the possible results of any measurement and their probabilities.

A. Generalization
If you measure a physical quantity F(x,p) on a particle in the state 1 () which is normalized
[ @v@ads=1,

you are certain to get one of the eigenvalues of the hermitian operator F (x,—ihd/dx).
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e If the spectrum of F is discrete
Fu, (2) = faun (2),

and {u, (x)} is complete, the probability of getting the particular eigenvalue f,, associated with orthonormalized
eigenfunction u,, () is

len|?, where ¢, = /u;‘l ()¢ (z) dx
e If the spectrum is continuous,

Fu(x) = f(2)us(z)

with real eigenvalues f(z) and associated Dirac-orthonormalized, complete eigenfunctions u,(x), the probability
of getting a result in the range dz is

le(2))? dz, where ¢(z) = /uz ()¢ (z) dz

Upon measurement, the wavefunction “collapses” to the corresponding eigenstate.

In both cases, the coefficients are calculated by the Fourier’s trick. One can easily check the normalization of the
coefficients and the expectation value. Normalization of 1) now means the total probability (summed over all possible
outcomes) has got to be one

Z ‘Cn|2 =1
n

and sure enough, this follows from the normalization of the eigenfunctions

Similarly, the expectation value of F' should be sum over all possible outcomes of the eigenvalues times the probability
of getting that eigenvalue

(F) = Z leal® £
Tndeed,
(F) = [ @) Po (@) da
_ / (Zm: ¢t ut (g;)) P (zﬂ: Cotin (z)) da
=y Zc;cnfn/ufn () up () dz
= i |c:,\2 F

So far at least, everything looks consistent.
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B. The hypothesis of measurement in quantum mechanics

In summary we have the hypothesis: For a measurement of physical quantity F on systems described by a wave
function ¥(x)

I The measured result is a statistical one
II The outcome of a single measurement could be nothing but one of the eigenvalues of F, say fn
III The probability of obtaining certain eigenvalue f,, is |c,|> = | [ up (@) (x) dm|2.

IV Mechanism: the system, having interacted with apparatus, has changed its state from original ¢ (x) to one of
the eigenstate u,(z) of F' with a probability |c,|> and gives a measuring outcome f,.

C. Reproduce of the original statistical interpretation

Can we reproduce, in this language, the original statistical interpretation for position measurements? Sure - it is
real overkill, but worth checking.

A measurement of x on a particle in state 1) must return one of the eigenvalues of . But what are the eigenfunctions
and eigenvalues of £? Let g, () be the eigenfunction and y the eigenvalue

zgy (z) = ygy (v)

Here y is a fixed number (for any given g, (x)), but z is a continuous variable. What function of = has the property
that multiplying it by « is the same as multiplying it by the constant y7 Obviously, it’s got to be zero, except at the
one point x = y; it is nothing but the Dirac delta function

gy (x) = Ad (z —y)

This time the eigenvalue has to be real; the eigenfunctions are not square-integrable, but again admit Dirac orthonor-
mality

[ @a@ar= [ s
= AP35y —y)
If we pick A =1, so
gy(z) =6 (x—y).
We see these eigenfunctions are also complete, any wavefunction ¢ (x) can be expanded as

“+o0 “+o0
w@c):/ c(y)gyu)dy:/ ()b (z —y)dy

— 00 — 00

with

so the probability of getting a result in the range dy is
le(9)* dy = [¢ (y)|* dy

not familiar? Write it as [t (z)|* da, which is precisely the original statistical interpretation.
What about momentum? We have found that the eigenfunctions of the 1D momentum operator
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which is also complete and any wavefunction can be expanded as

1 oo,
V)= —— /_ P76 (p) dp
1 oo
-y [ e

where the coefficients is given by the inverse Fourier transformation

1 O i
c<p>=¢<p>=%[m e FP7y (2) da

and |¢ (p)|2 dp is the probability that a measurement of momentum would yield a result in the range dp.
In momentum space, the position operator is & = ihd/dp. More generally

J o (p 55 p)¢ (p) dp, in momentum space

In principle you can do all calculations in momentum space just as well (though not always as easily) as in position
space.

(F(z,p)) = { fw* F Zh%)w (37) dx, in position space
B }7“

Problem 11 A particle of mass m is bound in the delta function well
V(z) = —ad(z).

What is the probability that a measurement of its momentum would yield a value greater than pg = ma/h? (Griffiths
Ezample 3.4)

D. Commutative operators and common eigenfunctions

In earlier sections we have met some situations where two or more operators may share eigenfunctions. For example,
the square of angular momentum L? and its z component L. do admit complete sets of simultaneous eigenfunctions,
the spherical harmonics Y}, (0, ¢). In the problem of hydrogen atom, the Hamiltonian, the magnitude of the angular
momentum, and the z component of angular momentum are mutually commutative operators, and one can construct
simultaneous eigenfunctions of all three, labeled by their respective eigenvalues n, [, m. In general we have the following
theorem:

Theorem 12 If operators F and G have common eigenfunctions set {¢,}, they are commutative.

Proof. Suppose

FQZ)n = fn¢n
éd)n = gn(bn

The set {¢,} is complete, thus any wavefunction can be developed on it
= andn
Acting the commutator of F and G on 1 gives
(FC: - GF) o= (Fé - GF) > andn
=Y e (FG-GP) 4,
n

= Zan (fngn _gnfn) d)n =0
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therefore

]
Let us check the reverse proposition:

Theorem 13 If I and G are commutative and the eigenfunctions of F in the set {¢,} are non-degenerate, {¢y}
must be eigenfunctions of G.

Proof. Now the premise is

or more precisely
FGé, — GF¢, =0
which means

F(Gon) = Gl = f (Gon)

(qun) is thus an eigenfunction of F with eigenvalue f,. On the other hand, {¢,} as eigenfunctions of F are non-

degenerate, ¢, and (G’(bn) must be the same states - the difference between them is a constant factor which we shall

call it g,
é¢71 = gn¢n

It turns out that {¢,} are also eigenfunctions of G, ie., F and G have common eigenfunctions. m

The case is a little complicated if the eigenfunctions of F or G are degenerate, we can nevertheless arrive at the
same conclusion. For example,

the combinations of spherical harmonics Y},

Y1 =a1Yi1 +0iYio+ Y
o = agY11 + b2Y10 + c2Y1 1
Y3 = azYi1 +b3Yio +c3Y1 1

are eigenfunctions of L2
L2 = 1(1 4 1)h%

for ¢ = 1,2,3 (three-fold degeneracy). Evidently they are not eigenfunctions of L. It is however always possible to

reshuffle them to the eigenfunctions of L., i.e. Y71 can always be expressed as a combination of ;. The general proof
will be omitted here.

Problem 14 f/a(a = x,y,2) are non commutative, do they share common eigenstates? If so, what are they?

E. A rigorous proof of the uncertainty relation

Proposition 15 If two Hermitian operators F and G do not commute, [ﬁ, CAJ} # 0, they have no common eigenfunc-

tion set and their variances obey an uncertainty relation

ootz (5 ([7.6]))
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Proof. We define

A :F_<F>7

AG =G - (G)

)

Evidently AF and AG are also Hermitian because (F) and (G) are real. Consider now a positive definite integration
1(¢) = /](@F - mé) w‘QdSr >0
where ¢ is a real constant parameter. We have
1) = / (¢ (Aﬁw)* ti (Aéw)*) (¢ (apy) —i (aGy)) dr
— ¢ / (Am)* (Aqu;) &P+ / (Aéw)* (A@p) &r
_¢i / { (AM)* (Aé‘q/z) - (Aé¢)* (AF¢) } &r
=¢? / b (AF)2 wd3r + /w* (AG‘)2 wd3r
i / W (AFAG‘ - AGAF) bdr

Define

o
IV
jan}

o= [ (aF) v =((aF)") =0
o= [ o (a6) vt =((a6)") o2

b=i / b (AFAG - AGAF) bdPr = <z [AF, Aé} >

Y

0

It is easy to show that the commutator [AF , AG‘] is the same as {F , G’} . Further more ¢ [F , G'] is Hermitian operator

(Check it!) so its expectation value b is real. The integral becomes
I(&)=a&®—bE+c>0.
There is no real root for £ (the parabola doesn’t intersect with the £ axis), so we must have
b* —4dac <0

i.e.

or in the notation of standard deviation

This is the uncertainty principle in its most general form. (You might think the ¢ makes it trivial — isn’t the right
side of equation (5) negative? No, for the commutator carries its own factor of 4, and the two cancel out.) m

For example, suppose the first observable is position (F' = &), and the second is momentum (G = p = —ikid/dzx).
We have already known

[l',p] =ih
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Accordingly

or, since standard deviations are by their nature positive,
Ax-Ap > h/2

That proves the original Heisenberg uncertainty principle, but we now see that it is just one application of a far more
general theorem: There will be an ”uncertainty principle” for any pair of observables whose corresponding operators
do not commute. We call them incompatible observables. Evidently, incompatible observables do not have shared
eigenvectors — at least, they cannot have a complete set of common eigenvectors. Their standard deviations can not
be zero at the same time. Later we will see matrices representing incompatible observables cannot be simultaneously
diagonalized (that is, they cannot both be brought to diagonal form by the same similarity transformation). On
the other hand, compatible observables (whose operators do commute) share a complete set of eigenvectors, and the
corresponding matrices can be simultaneously diagonalized.
As an application we can estimate the ground state energy of a simple harmonic oscillator
o1,

g1
om T 2™

jj2

Apparently we have the expectation values for Z,p

SO

and

The minimum value is determined by

which gives
S0

Inserting back to the expectation value of Hamiltonian we have

1h722mw 1 45 R 1

H . ==—— mw
(H Dnin 2m 4 h + 2 2mw 2
which is exactly the ground state energy we have got in the 1D harmonic potential.
For angular momentum we know their components are generally non-commutative. Fortunately we have

[[A/Q,f,a} =0, a=2zxY,2

This is why we could have common eigenfunctions of L? and one of the components, say, f/z, i.e., the spherical
harmonics Y}, (6, ¢) are chosen to represent the angular momentum states.

Problem 16 Zeng Jinyan, page 133, 11, 12, 14.
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IV. LINEAR SPACE - MATHEMATICAL PREPARATION

The purpose of this chapter is to develop the alternative formalism of quantum mechanics — matriz mechanics.
Quantum theory is based on two constructs: wavefunctions and operators. The state of a system is represented by its
wavefunction, observables are represented by operators. Mathematically, wavefunctions satisfy the defining conditions
for abstract vectors, and operators act on them as linear transformation. So the natural language of quantum
mechanics is linear algebra. 1 begin with a brief survey of linear algebra. Linear algebra abstracts and generalizes the
arithmetic of ordinary vectors, as we encounter them in first-year physics. The generalization is in two directions:
(1) We allow the scalars to be complex, and (2) we do not restrict ourselves to three dimensions (indeed, we shall be
working with vectors that live in spaces of infinite dimension).

A. 3D ordinary space

We are already familiar with 3D space. We will rely upon it and do not repeat the sophisticated definition of linear
space. 3D space has three basis vectors i, j and k and one has defined scalar products of vectors as

R=ai+0bj+ck

i-i=1, i-R=a, etc.

Here we will give the theory with slight formal modification. First, we define the scalar product anew. By new
stipulations on dot-products we can discriminate the two participants, one as (xg|, the other as |xq)

iri=1= <X0|X0> =1
and the vector is now expressed as

[R) = alxo) +blyo) + ¢|zo)
a = (xo|R), etc.

The square of norm of |R) is
(R|IR) = (a (xo| + b (yo| + c(20|) (a[x0) + blyo) + c[20))
—a2 b 42
and similarly, the inner product of |[R1) and |Rg) is

(R1|R2) = (a1 (xo| + b1 (yo| + c1(zol) (a2 [x0) + b2 [yo) + c2 |20))

aias + biby + cieo.

The real linear space with the definition of inner product is called the Euclidean space or inner product space. Secondly,
we use matrix to represent the vectors. For example, the three basis vectors are expressed as column matrices

1 0 0
|X0> = 0 7|y0> = 1 a|Z0> = 0
0 0 1
and the vector
a
IR) = alxo) +blyo) +clzo) = | b
c

Accordingly the left vectors are represented as row matrices

<X0‘ - (17070)a<y0| = (0,170)7<z0| - (0,0,1)
(R| = (a,b,¢)
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(@,o)

(ab)

FIG. 1: An example of operation.

thus we have the inner products

a
(yolR) =(0,1,0) | b | =b
c
a2
(R1|R2) = (a1,b1,¢1) | b2 | =aras +biba+cico
Co

B. Operation onto space

Operation is defined as a regular, ordered and linear deformation of the system with the basis of space untouched.
Here is an example of operation: We rotate the system by an angle ¢ about z axis, followed by a compression along
z axis by a factor a. The operation changed vector |R) into |T). Suppose

a a
Ry= (o] m= v
c d
From Figure (1) we know
a=1cosb, b=1lsin6

and
a’ =1lcos (6 + @) =1lcosfcosp —Isinfsinp = acosp — bsinp
b = 1Isin (0 + ) = lcosfsinp + Isinf cos = asinp + bcos ¢
d = ac

Write it in matrix form

a cosp —sing 0 a
b | =| sing cosp 0 b
c 0 0 «o c
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In general the deformation can be expressed as a square matrix
FI(E Fl‘ F(EZ

|T) = F|R), F=| Fy Fy, Fy.
Fzm Fy Fzz

<
<

N

C. Basis transformation

The same linear space may be expressed by two different orthogonal coordinates/basis sets. A change of basis is
mostly described by a matrix by which the new basis vectors are given as linear combinations of the old basis vectors.
Suppose we have two basis sets

basis 1 : [xo),|yo) ,|2o)
basis 2 : |ag) , |Bo) s |70)

A vector can be developed upon both

(=

IR), = alxo) +blyo) + c|zo) =

hS)

IR), =plag) +0|fo) +7|v)=| o

and one must have

alxo) +blyo) + clzo) = plao) + o |Bo) + 7 |70)

that is the change of basis will not affect the vector. Multiplying (ap| from the left on the above equation we have

a{ag|xo) + b (aolyo) + c{ao|zo) = p

similarly
a {Bolxo) + b {Bolyo) + c(Bolzo) = o
a {volxo0) + b (y0lyo) +c(yolzo) = 7
Define
Sa:z: = <Oé()|X0> 7Say = <a0|y0> 7Saz = <Oé()|Z0> ,€tC.
we get
P Saz Socy Saz a
o | = S Spy Sp= b
T Syz Syy Syz c
or
R), = S|R),

where S is the matrix for the basis transformation. The norm of a vector should not depend on the choice of the basis
sets, which means

o (RIR), =2 (RR),

or

(p’ 0—7 T) o = (a7 b’ C) b
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So
T T
a a a a
S| b Slov]=1[5b b
c
According to (AB)" = BT AT we have
a a
(a,b,¢)STS| b | =(a,bc)| b
c c

The matrix S is fixed by the transformation, while the vector (a,b, c) is arbitrary. We thus have
STS=1

i.e., S is an orthogonal matrix.

D. Transformation of operations

Operation F' changes vector |R) into |T) = F'|R), and this relation should be maintained under a basis transfor-
mation. In basis 1, this change is expressed by

IT), = F: [R), (6)
or more explicitly
a’ Fpy Fpy Fy. a
O | = Fua By Fye b
d F.. F., F.. c
In basis 2, it should read
|T>a = Fa |R>a
or
p/ Foa Fa,ﬁ Fa’y P
o | = | Fpa Fps Iy o
ud Fya Fyp Fyy T

Acting the matrix for the basis transformation S onto both sides of equation (6), we have

S|T), = SF,.STS|R), = Fo |R),,

=[T),
we immediately know
F, = SF,S"
or
Faa FaB Fa'y Sa'p Say Saz F’E’E Fzy Frz Saz Sﬁz S’yf
Fga Fpp Fgy | = | Sp= Spy Sp= Fyo Fyy Fy. Say Spy Syy
Fya Fyp Fyy Syz Syy Syz Fox Foy F.. az OBz Pyz
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V. MATRIX FORMULATION OF QUANTUM MECHANICS - REPRESENTATION THEORY
A. The idea of representation

Till now, we are used to express the state of micro-system by wave functions ¢ (r), and to express the operators
by some mathematical terms p, = —iha%, etc. Is this the unique way to express the quantum phenomena, quantum
rules and laws? In other words, whether all our knowledge of quantum mechanics could only be expressed through
wave functions v (r)’s and operators like p, = —ih%?

The answer is no. 9 (r)’s and operators like p, = —ih% are only one way (style) to express (represent) the quantum
theory. They are called coordinate representation (z-representation) of quantum mechanics. We have other ways to
represent quantum theory.

We have already familiarized with the Fourier transformation of v (r), i.e., ¢ (p), which can describe the state
precisely just as ¢ (r) do. In the ¢ (p) frame, operators are expressed by p, = pg, & = ih%. ¢ (p) and operators

like z = ih% could also express the quantum theory effectively and completely just as ¢ (r) and p, = —iha% do

(perhaps not s0 conveniently). They are called momentum representation ( p-representation) of quantum theory.
There are other representations that we are going to discuss in this section.

B. Representation of state

Let Q be an Hermitian operator, its eigenfunctions {uy, (z)} is a complete orthonormal set. Quantum theory can
be expressed through {u, ()} set and this formulation is called Q-representation.

Premise: {u, (z)} set is known and forms a complete orthonormal set. Any wavefunction ¢ (x) can be expanded
upon {u, (x)} set

Y (z) = Z Cnlin ()
with
Cn = /u’:7 (') (2") da’.

State function 1 (z) and the set of coefficients {c,} are uniquely connected. That means, given the wave function
¥ (), the coefficients {c,} are completely known. On the other hand, knowing the coefficients {¢, }, the state function
is uniquely determined.

The coefficients {c, } uniquely determine the state of the system just as the wavefunction v (x) does. The coefficients
{cn} is called Q-representation of the state.

Formally the Q-representation is expressed as a ”column matrix”, i.e. the N-tuple of the component of a vector
{cn}, with respect to a specified orthonormal basis

the Hermitian conjugate of ¢ is denoted by 1
Of =9 = (cf, 63,65, )

and normalization of ¥ (z)

/ O (@) (2) d = / ;c;;u;; (2) zn:cnun (2) dz = zn: Cren =1

is expressed in ()-representation

C1

T * %k 2
ww:(chc%c?n"') Cc3 =1
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Similarly inner product of ¥ and another vector ¢
ai

az

¢ = Z AnUn (.’ﬁ) = as 5

generalizing the dot product in 3D, is the complex number
ai

a2

/¢*¢d$:¢f¢= (C;C;C;“') as :chﬂw

The set of all square integrable functions constitutes a vector space, which physicists call it Hilbert space after David
Hilbert, who studied linear spaces in infinite dimensions. In quantum mechanics, then,

Wave functions live in Hilbert Space.

C. Representation of operators

In Q-representation, the states are expressed by column (row) matrix, how would an operators F be expressed in
Q-representation? A
The action of an operators F' upon a certain wave function 1 changes it into another function ¢ ().

¢ (x) = Fy ().

Both of them can be expanded upon the complete set {u, ()} in Q-representation

we thus have
Z bpuy, () = FZ anty, (2)

Multiplying u, (x) and integrating

+o0 .
/ ur, () {Z bpuy, () = F Z Apln (x)} dx

by means of the orthogonal properties of the eigenfunctions, we get

bm:E:/m

n —

w?, (z) Fuy, (2) apde = Z Fna,.

In matrix form, it is

b1 Fyy Fig Fig --- ax
by | _ | For Fao Foz - as

b3 F3y F3p F33 --- as
or

¢ = Fip.
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The operator Fis expressed by a square matriz in @QQ-representation
Fiy Fip Fiz -

Fy1 Fyy Fo3 -

F =
F3y F3p Fz3 ---

with the elements F),,’s defined by following integration

D. Property of the matrix of a Hermitian operator

The matrix element F;,,, and its conjugate

Er. = /um (Fun>*dx = / (Fun>*umdx: /uflﬁumda:

satisfy
Frth:an
Thus the matriz F' representing a Hermitian operator F is a Hermitian matriz
Fi=F
Indeed
Fi Fiy Fig -\ Fiy Fio Fiz -
o For Fapp Foz -+ | _ | Fo1 Fyy Foz ---
F31 F33 F33 -+ F31 F3p F33 -+
FYy Fyy Fypo-ee Fiy Fip Fiz -
_ | Fo Foy Fy -o- | _ | P Fap Fag - —F
Fi3 F3y Fy3 - F31 F3o Fiz -

Example 17 As an example, let us try to find the matriz form of angular momentum operator ij

Ey = —jhcos @% + ihcot@sing&a2
2

We choose the common eigenfunctions of (ﬁg,ﬁz) for 1l =1 as our basis and denote them as (in this case we have
m=1,0,—1)

/3 B
us . Yl,fl = 87 sin fe™"¥

The matrix of ﬁy is accordingly a 3 x 3 matriz. First let us operate ﬁy upon Y7 1

. . /3 ; /3 ;
Lyuy = LyY1 1 =ihy/ —— cospcosfe'? — ihy | — cot 8 sin ¢ sin fie'?
’ 8 8T
= iR/ —— cos B (cos p — isinp)e'?
8

th |3 ih
= E ECOSO = EYLO



we have

/ / W} LyupdQ = / / Yy Ly Y1 1 (sin 0dfdyp) = 0
* T * 7 . ih
// u5 Lyu d§) = // Y1'gLy Y11 (sin0dOdy) = 7

// w} LyupdQ) = //Yl’j_lﬁynl (sin Bdfdyp) = 0

- - ) /3 . L 3.
Lyus = LYy 9 = —ihcosg = (—sinf) =ik = sin 6 cos
3 i —ip
— ity | L sin (g)

ih , ik 3
= % g Sin 96“’0 —+ % g Sin 067“‘9
ih ih
— My Py
\/§ 1,1 1,—1

The result of IA/yYLO gives

V2

o ~ 10
// wi Ly usd) = // Y7, Ly Va0 (sin 6dfdg) = f%,
// w3 LyusdQ = // YffllA/yYLO (sin 0dfdyp) =0

// u’gﬁyude = // Yl*ﬁllA/yYLo (sin8dfdp) = %,

In summary the matriz form of Iiy 18

and

ih
0 -5 0
L, = \7/’? 0o -t
2 ih V2
0 7 0

Operator in its own-representation takes a diagonal form with diagonal elements its eigenvalues. Suppose

Qun, (33) = dnlUn (w)

then the matrix element

= QW,6m,n
which means
a1 0 0
| 0 @ O
C=1 0 0 4
In the above example, we find
h0 O 22 0 0
L.=(00 0 |,L?2=| 0 2r* 0
00 —h 0 0 2#r?
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E. Matrix formulation of rules of quantum mechanics
Here we state the rules of quantum mechanics in matrix formulation. First, in @)-representation
Y= Z Cnliy, ()
n
the expectation value of observable F'
(F) = / V* Fopda

= /;c;ufn ($)an:cnun (z) dx

= Zc:nancn
mn
This is expressed in matrix form
Fiy Fi2 Fiz - c1
Fy Fay Fo3 -+ Co t
K k% _
(e, ez,63,+) F31 F3p F33 - c3 =YY,

In short the expectation value of an observable F' is
(F) = [ v Fods = v,
Secondly, we may formulate the eigenvalue equation of operator F' in the language of matrix. Starting from the

oy =M

we multiply «}, (z) and do the integration

/u:‘n (2) {FZ Cptiy (x) = )\Z Cnln, (x)} dx
immediately we have

ch/ufnﬁund:ﬂ = Acpm,

or
§ ancn = Acm,
n

In matrix form it reads

Fii Fip Fiz --- &1 C1
Fyy Fyy Foz --- 2 | | e

F3y I3y Fz3 --- 3 c3

Thus, eigenequation of operator F' is now expressed to find the eigenvalues and eigenvectors of an Hermitian matrix.
An example that finds large amount of utilization is the case that F' is a square matrix of finite rows and columns

Fii Fip -+ Fi c1 c1
Foy Foy -+ Fyy 2 | | e
- b

Fipp Fro oo iy Ck Ck
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The condition that nontrivial solutions exist requires that

Fiu-X Fio - Fu
Fyy  Fop— X - Fyy —0
Fi Fro o Frp— A

which gives an algebraic equation of A of k-th power, and by solving it, we can find the eigenvalues of F' to be the
roots of the algebraic equation

)\17>\27" Ak

VI. UNITARY TRANSFORMATION BETWEEN TWO REPRESENTATIONS

In the section Linear Space, we introduced the basic idea of linear algebra, including basis, operation, and the
transformation of them. The wvectors transform as

R), = SR),
while the operations change according to
F, = SF,S".

In quantum mechanics, the eigenfunctions of Hermitian operators play the role of basis in the function space. It is
naturally to consider the generalization of 3D vectors in two directions as we mentioned earlier: (1) We allow the
components of the vector to be complez in order to represent the wavefunctions. This turns the transformation matrix
S, which is orthogonal for 3D (real) vector space, into a unitary matrix. The transformation is therefore a unitary
one, and (2) instead of working in 3D, our vectors live in spaces of infinite dimension. We will show in this section a
similar transformation of eigenvectors and operators arises naturally in quantum mechanics.

A. Two sets of basis and their relations

Suppose we have two Hermitian operators A and B. Both of them have their own complete orthonormal eigenfunc-
tion sets

A {un(@)} ur (), ua (@), - un () -
B’ {(bu(x)} ¢1(x)7¢2($)7¢u(x)

and form two independent representations, A representation and B representation. The relation between them can
be established through the relation of the two basis sets {u,(z)} and {¢.,(z)}.

Here we use a slightly different method to introduce the transformation matrix (actually it is more often used in
linear algebra textbook), that is, we obtain the matrix element from the transformation of basis vectors. The new
basis vectors in 3D are given as linear combinations of the old ones. Likely, the eigenfunction in the set {u,(x)} can
be expanded upon {¢,(z)}

un () = Sundy(x) (7)
where the coefficients are inner product of two of the basis vectors

/@wwmmzﬁmm;ammmzmn

The elements of the transformation matrix are thus

Sun = (¢ua un)
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This matrix changes the basis vector in representation A to representation B. The orthonormality of the basis vectors
gives

/ ul (2)up (z)dz = / D Snmdn (@)D Sundy(@)dr =Y > S Sundp
14 v 14 v
I

"
ie.
STs=1.

Here ST is the hermitian conjugate of S and I is unit matrix. It is too early to say the matrix S is unitary - we need
prove SST = I (one may think it trivial, however the situation does occur that SST # S7S). For this purpose we
calculate

Y SunSin = Sun (S7),, = (557),,

n

:Z/%M%@M/%mewf 8)
On the other hand, the eigenfunction in the set {¢,(z)} can be expanded upon {u,(z)}
o, (2') = Zcmum(x’)
with
m = [0 ()6, @) = (0 8,) = S}y = (1),

Inserting back to the right side of (8), we have

(ﬂmw=§:/@wm4mm/§}wmum¢wmy
=3 [ Giaun(w)de Y e
=fm@2%%@m=/@w@mmz%
ie.
SSt=1.
The inverse matrix of S is thus

S~ =gt

The matrix satisfying this is called unitary matriz, the corresponding transformation is called unitary transformation.
We conclude that the transformation from one representation to another is unitary.

B. Transformation of state from representation Ato B

We now check the transformation of the state between two representations. An arbitrary state function ¢ (z) has
its A representation expression as follows

b(@) =2, antin(@)

ai
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In representation f?, the same state is depicted as

w(aj) = bz:l, bu¢u (l‘)

Now, starting from representation A, we want to know the expression of 1 in representation B. By means of equation

(7)
Y(z) = Zanun(x) = Zan (Z Slln¢l/(x)>
=y (Z (S,man)) Su() = budu(x)

which gives the relation of representation of states in different representations

b, = Z Sunan

Yp = Sha
or, in the matrix form
b1 S11 Si2 Sz - ay
bo _ So1 Sag Saz - ag

S31 S32 Szz - as

Inversely, starting from representation B , we know the expression of ¢ in representation A

an =Y Si,by

Ya=STyp
or
a1 STy S5 S5y - by
az _ | Si2 S3p S5 - ba

asg Sf3 553 S§3 bs

We notice that the matrix elements are now complex (wavefunction is in nature complex) and the matrix itself is
unitary (in ordinary 3D vector space it is real and orthonormal).

C. Transformation of operators

In representation fl, an operator Fis expressed by a square matrix

Iy Fig Fig ---
Fy— Iy Fyy Fog -
F3y F3g I3z ---

with the elements
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In representation B the matrix is
Fyy Fiy Fig -

/ / /
F21 F22 F23

Fo=\p F, o

and the elements are defined as

b= [ 6.0 Fo, (@) do

Bu@) = 2 (S7),., unl@) = 3 S
Zsum“

Inserting back the expansion

we have

= /;S#mu:n(x)ﬁzn:Sjnun x)dx
_ Zsum </ (2) Pun(z )dx) sz

:ZS"‘mFm” S nl/

The operator then changes according to
Fp = SFaSt = SF48™!

which is reminiscent of the transformation of operation in 3D space, in that case the transformation matrix S is
orthonormal. We immediately have the transformation from representation B to representation A

Fy=S"FpS=5"1FzS

Example 18 Suppose we have a mzscmsyst@m with orbital angular momentum with eigenvalue 1(1+1)h%. We choose
the common eigenfunctions of L2, L, as representation A

w1 =Y1.1(0,¢)
ug = Y1,0(0, )
ug = Y1,-1(0,¢)

The operator ﬁy in this representation is a 3 X 3 matriz

ih
0 - 0
L, = 7"L 0o -
2 ih V2
0o % 0

The representation B is chosen as the common etgenfunctions of IA/Q, ﬁy We now try to find the matriz form of iy

in representation B. Obviously, we should have already know the result - ﬁy in its own representation is a diagonal
matriz with the diagonal elements its eigenvalues.

Solution 19 Step 1. Solve the eigenvalue problem of f/y in A representation. Eigenvalues of f/y are determined by

ih
0-x ~F 0
_ _ |
70')\ =0
0 7"% 00—\



which gives

2h2 712712
I W
2 2
AN —mA=0

The three eigenvalues are h,0, —h respectively.

o The eigenvector corresponding to h is obtained by solving the equations

ik 0 -1 0 a a
— 11 0 -1 b | =nr|D0
V2 01 0 c c

which are reduced to

with solutions
a=—c, b=/2ia
The normalization of the eigenvector gives

aa* +bb" +cct =1

or
aa® 4+ 2aa™ +aa* =1
. 1
aa® = —
4
thus
1 .
= _e'¥
a=ge
We take ¢ =0
1 b ) 1
a = — = — CcC= ——
2’ V2’ 2
and obtain the eigenvector
1
7
=\ 5
1
2
o The equations corresponding to eigenvalue O are
. 0 -1 0 a a
ih
— 11 0 -1 b |=0]|25o
V2 01 O ) c c

So
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The normalization gives

aa* +bb" +cct =1
2aqa* =1

We thus have

1 .
a=—=e"%
V2
again we take ¢ =0, and
1
a=c=—
V2
The corresponding eigenvector is
1
V2
p2=1 0
1
V2
e For the eigenvalue —h
. 0 -1 0 a a
IO OO Y S [
V2 01 0 c c

We have

(a—c)=-b

i
—b=—c
V2
a=—c¢, b= —\2ia

It is easy to repeat the procedure above and find the eigenvector

1

T2

Step 2. Determine the new basis and transformation coefficients. In representation B the new basis are chosen as
¢1, 02, 03, and they can be expanded as ¢, (x) =3, (ST)W U ()

¢1 = ST yur + Shus + STus
1 7
= U1+ —zuz2 — ;U3

2 V2 2

We easily obtain the transformation matrix

1 1 1
B R I
S31 Szy Sz 2 5 T2



which is just writing the three basis to form one square matriz with its hermitian conjugate

i.e. Syn = (¢u,Up).

Lo _ i _1
2 T2 2
s=| X o L
Yo
2 2 T2

Step 3. Running the transformation through. The states change as

p = SYa

so in representation B the eigenvectors are as expected

1 1 1
R ?
(¢1)p = e 0 %] V3
2 V2 2 T2
1 1 1
L F (v
<¢2)B: ? 0 751 (1)
T v 2 vz
1 1 1
i V22 2;
R IO e
2 V2 2 T2
And the operator f/y transforms as
(iy)B = S(A@/)Asi1
1 i 1 ih
3 Tys 3 0 = 0
N U S i _ih
2o, V3 V2o V2
3 5 T2 0 5 0
1 _ i _1 Lo _h
2 V2 o2 : 2
-1 L o0 =X 20 2| =
V2T V2 V2 V2
T M1 Yhog
2 2 2 2 2

I
O =

N
I\DM—-S .
no

oo /N

e
o O
=°° otk

We summarize the result of representation transformation in the following table.

‘Representation A {un ()} ‘Representation B:{¢,(x)}

State ¥

Operator F
State transformation
Operator transformation

Transformation matrix

Problem 20 Zeng Jinyan, textbook, page

a1
a
’l/}A: 2 ,ak:(Uk,'l/})
as
Iy Frg -

Fa=| Fn Fo --- |,

an = (umaﬁ‘un)
Ya=STYp

Fy= STFBS = S_lFBS

SL Siz

St = 551 522

S:Ly, = (un7¢ﬂ)
133, 15.

by
ba
wB = 7bl/ = (¢U7¢)
b3
Fiy Fiy -

Fp=| F} Fpp -+ |,

Fuv = (6, Fév)

Yp = Sa
Fg = SFAST = SFAS_I
Sll SIZ
S=1 S5 S22 -+ |
S;Ln = ((b/uun)

35
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VII. DIRAC’S NOTATION

The theory of linear vector spaces had, of course, been known to mathematicians prior to the birth of quantum
mechanics, but Dirac’s way of introducing vector spaces has many advantages, especially from the physicist’s point
of view. Like a vector in 3D lives “out there in space”, independent of anybody’s choice of coordinates, the state of
a system in quantum mechanics is represented by a vector, that lives “out there in Hilbert space”. We can express
the wavefunction by means of ¥ (z) in position space, ¢(p) in momentum space, or ¢, in Q-representation with bases
{uy, (z)}. But it’s all the same state, ¥(z), ¢(p), and ¢, contain exactly the same information.

A. States

Detached from concrete representations, Dirac’s notation for a physical state represented by a state vector in a
complex vector space is called a ket and denoted by |«). The vector space is a ket space. We can also introduce the
notion of a bra space, a vector space dual to the ket space. We postulate that corresponding to every ket |a) there

exists a bra, denoted by («/|, in this dual, or bra, space. In Q-representation the ket vector |) is a column matrix

while the bra vector is a row matrix (the hermitian conjugate of the column matrix)
<a| = (a‘Tv a’;a a;v e )

The inner product of a bra and a ket is written as a bra standing on the left and a ket standing on the right, for
example,

(Ble) = ((B]) - (Ja))

bra (c¢) ket

This product is, in general, a complex number

(Bla) = biay + byas + bias + -+ -bian + -+ = Zb;ian

n
Evidently (8]a) and {(a|B8) are complex conjugates of each other
(alB) = (Bla)”

We immediately deduce that («|a) must be a real number. Furthermore (a|a) > 0, where the equality sign holds
only if |a) is a null ket. This is sometimes known as the postulate of positive definite metric, which is essential for
the probabilistic interpretation of wavefunctions. Two kets |a) and |3) are said to be orthogonal if

{a|8) =0

Given a ket which is not a null ket, we can form a normalized ket |&), where

G (1 .
a>—< <M>)|>

(@a) =1

with the property

Quite generally, /({a|a) is known as the norm of |a), analogous to the magnitude of a vector in Euclidean vector
space.
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B. Rules

In Dirac’s notation, the basic rules of quantum mechanics look much simpler. Suppose we have discrete eigenvalue
spectrum {u,, (x)} or in Dirac’s notation {|n)}. The orthonormality reads

<m|n> = Omn

The completeness of the spectrum means that any ket |¢) can be expanded as
) =Y cnln)
n

where

cn = (nft)

Inserting this back we find
[0) =D In) (nl¢)

SO

Y In){nl=1 9)

which is the property of completeness in Dirac’s notation. For continuous spectrum {u, (x)} (or {|z)}) the orthonor-
mality and completeness are expressed as

(z|12y =6 (2 —2")

/dz\z) (2] =1

The eigen-problem of operator F' is written as
Fln) = fun)
The time-dependent Schrodinger equation takes the form of
ind 1wy = )
dt
whereas the stationary equation is
Hin) = E,|n).

As an example of application of the completeness, we notice that equation (9) is often inserted into appropriate
position to simplify the calculation. Suppose the operator F' transforms ket |¢) into |¢)

) = F|¢p)

Inserting the completeness of {|n)} into the above equation twice
Y ) (nfg) =D Fln) (nly)

Multiply the bra (m| from the left and notice (m|n) = 0.y, we have

(mlg) = (m| F'|n) {n]¢))

n

Here (m)| F [n) is the Dirac notation of the matrix elements F,,.
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C. |n)

The occupation-number representation of the simple harmonic oscillator is very useful in representing quantum
theory. We change the notation for raising and lowering operators into ' and @, which are known as the creation
and annthilation operator for a particle with energy unit fiw. Let [n) be the eigenvector of Hamiltonian

ﬁ:hw(aTM;) :m(ﬁwé)

1
E, = -
<n+2)hw

The physical meaning of |n) is thus there are n particles in the state |n) and this representation is known as the
occupation-number representation. The operator a (a') annihilate (create) one particle in the state

with eigenvalue

aln) = vn|n—1)
' n) =vn+1|n+1)

For the ground state |0)

so the first excited state can be generated from it

and we can generate any state |n) from |0)

Simple harmonic oscillator provides us an example of representing wavefunctions and operators. The basis in this
example is the eigenvectors {|n)} and the matrix elements of operators are given by

Fyn = (m| F'|n)
For example, the matrix elements for the annihilation operator are
(n'|aln) = Vndp n1
while for creation operator
(n'|a" In) = Vi + 16 1

In matrix form they are

ooo%
._
oo&o

)

|
c o oo
oaoo

oo%o
[
o&oo
oo oo

%ooo




and the number operator N =alais

o O O O
o O = O
SO N O O
w o O O

D. Application

We discuss here a crude model for (among other things) neutrino oscillations.

Example 21 Imagine a system in which there are just two linearly independent states:

|1>:<(1)>7 and 2)2(?)

The most general state is a normalized linear combination
|U) =all)+b|2) = (Z) . with a® + % = 1.

The Hamiltonian can be expressed as a hermitian matriz; suppose it has the specific form

ne ()

where g and h are real constants. If the system starts out (at t = 0) in state |1), what is its state at time t?

Solution 22 The time-dependent Schrodinger equation says
d .
ih— |U) = H |¥
ey = )

as always, we begin by solving the time-independent Schrodinger equation

H ) =B |¢)
that is, we look for the eigenvectors and eigenvalues of H. The characteristic equation determines the eigenvalues
h—FE N gE‘:0:>(h—E)2—92:0:>h—E:1Fg=>Ei:hj:g
g _

Evidently the allowed energies are (h+ g) and (h — g). To determine the eigenvectors, we write

<Z }gL> (g)—(h:tg)(?):>h04+gﬁ—(h:|:g)a:>ﬂ—:|:a

so the normalized eigenvectors are
1 1

Next we expand the initial state as a linear combination of eigenvectors of the Hamiltonian

() = (;) = 5 () +1-)
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Finally we tack on the standard time-dependence exp (—iEnt/h)

(1)) = 5 (7P ) i )

_ L mitnrgn [ 1) mithegyeyn [ 1
2 1 1

1 —iht/h e—igt/h + eigt/h
- 56 e—igt/h _ eigt/h

_ o—iht/n | COS (gt/h)
—isin (gt/h)

In the model of neutrino oscillation |1) represents the electron neutrino, and |2) the muon neutrino; if the Hamiltonian
has a non-vanishing off-diagonal term g, then in the course of time the electron neutrino will turn into a muon
neutrino, and back again. In 2002 Nobel Prize in Physics was awarded with one half jointly to: Raymond Davis
Jr, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA, and Masatoshi Koshiba,
International Center for Elementary Particle Physics, University of Tokyo, Japan, “for pioneering contributions to
astrophysics, in particular for the detection of cosmic neutrinos”. In order to increase sensitivity to cosmic neutrinos,
Koshiba constructed a larger detector, Super Kamiokande, which came into operation in 1996. This experiment
has recently observed effects of neutrinos produced within the atmosphere, indicating a completely new phenomenon,
neutrino oscillations, in which one kind of neutrino can change to another type. This implies that neutrinos have a
non-zero mass, which is of great significance for the Standard Model of elementary particles and also for the role that
neutrinos play in the universe.

E. Projection operators

The license to treat bras as separate entities in their own right allows for some powerful and pretty notation. For
example, if |a) is a normalized vector, the operator

P =) (o
picks out the component of any other vector that “lies along” |«)
P|B) = (a|B) |a)

we call it the projection operator onto the one-dimensional subspace spanned by |«). It is easy to show that projection
operators are idempotent: P? = P

P216) = P (P18)) = P(alB) |a) = (al) (P o)) = (alB) (ala) |a) = (]8) |a) = P|8)

To say two operators are equal means that they have the same effect on all vectors. Since P2 |3) = P|3) for any
vector |3), P? = P.
One may also determine the eigenvalues and eigenvectors of P. If |v) is an eigenvector of P with eigenvalue A, then
Ply)=Alm)
and it follows that
P2ly) = AP y) = A Jy)

But P2 = P, and |7) # 0, so A2 = A, and hence the eigenvalues of P are 0 and 1. Any (complex) multiple of |a) is
an eigenvector of P, with eigenvalue 1; any vector orthogonal to |«) is an eigenvector of P, with eigenvalue 0.

Let Q be an operator with a complete set of orthonormal eigenvectors Q [n) = gn |n). We can show that Q can be
written in terms of its spectral decomposition

Q = ZQn |’I’L> <n|



An operator is characterized by its action on all possible vectors, so what we must show is that for any vector

Qla) = {an n) n|}|a>

Indeed we expand |a) as |a) =Y, ¢ |n) with ¢, = (n]a),

Qla) =Y Qealn) =) (nla)galn) = (an n) n) )

n

Q:ZQnMw (n

Problem 23 Griffiths, page 123, 3.22, 3.23, 8.26, 3.35 (example), 3.37.

VIII. CONSERVATION LAW AND SYMMETRY
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In classical mechanics, these exist many conservation laws of dynamical variables, such as energy conservation,
momentum conservation, etc. These conservation laws are closely connected with symmetries of the system. In quan-
tum mechanics, the corresponding conservation law still hold and the relation between conservations and symmetries

remains the same.

A. Constant of motion

Let us first check how the expectation value of operator changes with time. Consider the mean value of a certain

dynamical variable F
(F) = /\I/*F\I/d3r

on a state W(r,¢) which satisfies the time dependent Schrédinger equation

ov
~— —HU
zﬁa

The time derivative is calculated as

d d ,
& iry = dt/qu@d

= @*A 3 * @ 3 * T 87\11 3
_/<8t> F\I/dr+/ <6t>\lfdr+/\I/F(t>dr
H

Y

OF 1. \" - R
:/\I!* \I/d3r+/ —HU F\I/d3r+/\II*F

ot ih

L(OF 14 5
_/\1; <8t+[F7 Dxpdr
If operator F' satisfy the operator relation
oF 1

EJF—[F H} 0

Then d (F) /dt = 0 and F is called a constant of motion. Generally, the operator doesn’t rely on time, dF/dt = 0, so

the criterion for a dynamical variable to be a constant of motion is

{FH} -0
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That is, if [F,ﬁ] = 0, the expectation value of F on any state does not depend on time. Furthermore, we can

show the probability distribution of finding eigenvalues of F' is independent of time. We can choose the common
eigenfunction set of F' and H (this is possible because they commute each other) {u, ,}

Hup = Epun,

Fun,p, = fuun,u-
as our complete and orthonormal basis, with
/ U U A3 = S
n,pum,v mn®uv
Thus any state can be expanded upon them
P(r) = Z Cn,pUn,p
n,p

_ —LEnt
U(r,t) = E Cn plin, p€ PO
n,p

and the expectation value of E" on state W(r,t) is
(F) = / U*(r, )0 (r, t)d°r
= Zc:’uu;#e%E"t Zfl,cm’l,umyl,e_%E’"td?’r
n, v

, m
* 2
= ch,#cn,ufu = Z ‘cn,u’ fu

n,u n,u

2, is therefore independent of time for given n.

The probability of a measurement giving result f,, that is |Cn,#

B. Several typical cases of constant of motion

(a) Momentum conservation: If the space is homogeneous (free particle), or the particle feels no potential, the

momentum is conserved

obviously

(b) Angular momentum conservation: If the space is isotropic (central force field), e.g. the particle feels the same

potential in any direction

_ 1 a2
19, ,0 %
2mr725(r E) 2m7"2+ (r)

with
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The angular momentum operator and its components contain only # and ¢, and has nothing to do with r. Thus
[131, iﬂ —0
and
(.2, = [A11,) = [A1,2.] =0
i.e. the angular momentum is conserved, including its three components.

Energy conservation: If the Hamiltonian itself H doesn’t depend on t, then evidently
[HH} —0
which is the conservation of energy in quantum mechanics.

Parity conservation: Define an operation of space inversion r — —r
PU(r,t) = U(—r,t)
P is known as the parity operator. We have

P20(r,t) = PU(—r,t) = U(r,1)

i.e. the eigenvalues of P2 is 1 and the eigenvalues for Pis £1. So

The eigenfunction ¥y (¥5) is known as the even (odd) parity state of the system. If the Hamiltonian is unchanged
under space inversion

H(—r) = H(r)
then
P (H'\Il(r,t)> — H(—r)PU(r,1)
= H(r)PU(r,t)

PH=HP
Thus the parity is a constant of motion and P and H share common eigenfunction set, which means that the

eigenfunctions of the system have definite parity and do not change with time. This is the conservation of parity
in quantum mechanics.

Constant of motion is an important point in quantum mechanics. It should not be confused with the con-
cept of stationary state. We emphasize here the distinction between them. Explicitly, the stationary state is a
particular eigenstate of H. It is the result of separation of variables from the Schrodinger equation

LG
Zha (r7 t)

pram HU(r,t)

which gives the stationary equation

Hij(r) = Exj(r)

and the time-dependent factor

. d
ih 1(t) = B (t)
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and
U(r,t) = (r)e #P
The expectation value of any dynamical variable F (constant of motion or not) on a stationary state
(F) = [(iwye +5 Fwe HPas
- [v@Fomd

does not change with time. On the other hand, the constant of motion is a particular observable represented by an

operator F that commutes with H
[13’, H} —0.
The expectation value of a constant of motion on any state (stationary or not)
(F) = / U*(r, t) FU(r, t)dr

does not change with time.

Here is an additional notes on expectation value of conserved quantities. The conserved quantities do not necessarily
take definite values, unless the system is in one of the eigenstates of that operator. For example, in the case of free
particles, the constant of motion or the conserved quantity is the momentum p, whose eigenstates are plane waves
e®*/IThe state of a free particle is generally a wave packet, i.e. the superposition of plane waves. The momentum
does not take definite value - there is a probability distribution. Another example is the particle in central force field.
The constant of motion or conserved quantity is the angular momentum L

LY (
L.Yim(

0,¢) = U1+ )Y (0, )
0, 90) = mhYi, (97 90)
The system may be in a state like ¢p = ¢1Y11(60, ) + c2Y20(6, ), for example or more generally

1/) - Z Clm}/lm(ea QD)
m

which is not an eigenstate of L? and L, at all.

Generally the initial condition determines whether the system would stay in the eigenstate of the conserved quantity
at time t. If the system is prepared initially (¢ = 0) in 1%, one of the eigenstate of conserved quantity F, it will stay
there forever. On the contrary, or more practically, if the system is initially in a combination state (not an eigenstate

of F)
U(r,0) =) ar(0)yy
k

at time ¢ it is

\I/(I‘, t) = Z ak(t)wk
k

and the probability of finding the particle in one of the eigenstates does not change with time

d

@) =0 or [ax(®) = lar(O)F

The quantum numbers of conserved quantity F' are known as good quantum numbers.
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C. Conservation law and symmetry

Noether’s theorem is an amazing result which lets physicists get conserved quantities from symmetries of the laws
of nature. Time translation symmetry gives conservation of energy; space translation symmetry gives conservation of
momentum; rotation symmetry gives conservation of angular momentum, and so on.

This result, proved in 1915 by Emmy Noether shortly after she first arrived in G&ttingen, was praised by Einstein
as a piece of “penetrating mathematical thinking”. It’s now a standard workhorse in theoretical physics.

If someone claims Noether’s theorem says “every symmetry gives a conserved quantity”, they are telling a half-
truth. The theorem only applies to certain classes of theories. In its original version it applies to theories described
by a Lagrangian, and the Lagrangian formalism does most of the work in proving the theorem. There is also a version
which applies to theories described by a Hamiltonian. Luckily, almost all the theories studied in physics are described
by both a Lagrangian and a Hamiltonian.

1. Translation invariance and momentum conservation

A translation operation is defined as a displacement of the system bodily along z-direction by an infinitesimal
segment a so that x — 2’ = x 4+ a. Suppose () is the original wave function, ¢'(z) is the translated one, D(a) is
the translation operator, then

¥ — ¥ (x) = D(a)y(x)

Evidently translation invariance means that
ie.

Replacing « with z — a we have

N 2
Dlayb(z) = b(z — a) = (x) — a5 + S(-ap T L+

Z% n () = ()

dx”
The translation operator along = by a is thus expressed as
D(a) = e70d = e~ #%=
where the infinitesimal operator is nothing but the momentum operator

d
P = —zh%

Suppose the space is homogeneous, the Hamiltonian H = ﬁfﬂ is invariant by a translation f)(a)
D (fr(x)) = HDY(x)
that is
DIt = AD = D, f1| = 0= [p., 1] =0
which is exactly the condition for conservation of momentum. We conclude that homogeneity means conservation of
momentum.

It is casy to show translation operator D(a) = e~ %%+ is unitary. Indeed, the Hermitian conjugate of D(a) is

D(a)t = e obe = D(a)™' = D(—a)



D(a)D(a)f =1

Translation realized by D(a) is thus a unitary transformation. Operators are transformed as

F' = D(a)FD(a)".

Generalization to 3D is straightforward.

2. Rotation invariance and orbital angular momentum conservation

Rotate the system bodily around z-axis by an angle a, the wavefunction ¢ (r, 6, @) changes as

b= (r,0,0) = R(a)(r,0,)

Similarly rotation invariance means that

w/(/r7 9? @l) - w(/r7 9? <)0)
R(a)p(r,0, ¢+ a) = (1,0, p)

Replacing ¢ with ¢ — a we have

R(OL)?ZJ(T‘, 07 90) = 1/’(73 05 ¥ — Oé)
0
= ¢(7',9,80) + (_ )8¢¢(r 9790)
1 9
:;a(—a%) Y(r,0, )

— e B (r, 60, p)

The rotation operator around z-axis by « is thus expressed as

2!

R(a) = e 0% = g noks
where the infinitesimal operator is the z-component of the angular momentum operator

0
= —Zh%

Now we consider an infinitesimal rotation around an arbitrary axis n by «
Mn®Wﬂ—w@—Aﬁ
0 0

— lr) — DagLolr) — Byg-vlr) - Brgt v + -

=3 (- AT V) ()

n=0

As Figure 2 shows, Ar = a(n x r)

S‘r—t

0=3 -

n=0

(n xr)-V)"y(r)

By means of the relation

(AxB) - C=A-(BxC)

46



Ar

r+Ar

FIG. 2: A rotation around an arbitrary axis n by a.

we know

SO

The rotation operator around an arbitrary axis n by « is thus expressed as
R(n,a) = ef%o‘(nl‘)

More explicitly

47
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Suppose the Hamiltonian is isotropic or the potential has spherical symmetry (central force field)

we thus have
[R(X07a)ag:| = [R(y()a :| [ Zg, )aI:I:| =0
(Lo t1] = |2y, 1] = | 1] = 0
i.e. ]_AZm,IA/y,I:Z are conservatives, so is operator 1?2 = IE + Ef} + f@ Isotropy thus means the conservation of

momentum. In cases the potential V' is invariant under rotation around certain direction, the component of angular

momentum on that direction is conservative. For example, in the case of a cylindric symmetry potential V' =

imw? (2% + y?) + 2mw?z?, L. is conservative.

Rotation operator is also a unitary operator and transformation accomplished by such an operator is an unitary
transformation. Indeed

R'(n,a) = ere(nl) = R '(n,a)
and wavefunctions and operators are transformed according to the following rule
b(r) = /() = Rin,a)i(r) = e 7 Ey(r)
F=F =Rmn,a)FR (n,a)=e #* a(nl) profa(ntl)

8. Conservation laws and symmetry in general

More generally, we consider a linear transformation @, which transforms ¥ into ¥ = QU, the Schrédinger equation
in invariant under this transformation, i.e.
0 - 0 .
ih—¥ = HV and ih— ¥’ = HY’
ot ot
We have
2 ow = QU
MN— =
ot
Applying Q‘l gives

zhgtllf Q 'HQU = HY

then
QUHQ =1 = HQ=Qil = [Q./1] =0
The symmetric transformation Q forms a symmetric group and the conservation of probability requires that Q is

unitary, i.e. QQT = QTQ = 1.

For symmetry transformations that differ infinitesimally from the identity transformation I, we can write
Q =1 —icF
where ¢ is an infinitesimal parameter. The unitary of Q means

OO = (I+i5FT ) <If isﬁ')
— 1 e (F . FT) +0(?)
_
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SO
FoFi
i.e. F is Hermitian operator, known as the Hermitian generator of Q Then

Q] =0 = [FA]=0 = %<F>=0

In general, there exists a constant of motion F corresponding to symmetry transformation Q.
The following table summarizes the main result in this section.

Symmetry Conserved Quantity
Homogenous Space/Translational Invariance Momentum
Isotropic Space/Rotational Invariance Angular Momentum
Space Inversion Invariance Parity
Time Translation Invariance Energy

IX. SUMMARY ON PART IV

Two cornerstones in quantum mechanics are wavefunctions and operators. In wave mechanics, wavefunctions are
mathematical functions representing wave nature of the micro-particle, while operators are mathematical derivatives
acting on the wavefunctions. There exists a special class of operators in quantum theory - Hermitian operators.
They usually obey a non-commutative algebra and their eigenvalues are real, the eigenfunctions are orthonormal and
complete.

We can nevertheless describe the theory by means of another totally different language - matrix. In matrix me-
chanics, wavefunctions are column or row matrices, whereas operators are square matrices. The eigenvalue problem
is reduced to find the eigenvalues and eigenfunctions of a Hermitian matrix.

The completeness of the eigenvectors of a Hermitian operator enables us to represent the quantum theory using the
eigenvectors as basis just like we use three basic vectors to express any vectors in 3D space. In this sense, wavefunctions
live in Hilbert space, which is complex and infinite dimensions. Moreover, we can jump between two different bases -
the wavefunctions and operators are connected by a unitary matrix.

Dirac invented much simpler notations to express quantum theory. In this new picture, states are distinguished as
bras and kets. An especially useful representation is the occupation number representation of harmonic oscillator.

For a measurement of physical quantity F' on a wave function ¥ (z) the result could be nothing but one of the
eigenvalues of F, say f,. And probability of obtaining f,, is |cn|2. If two operators are commutative, one can find
the common eigenfunctions set and measure them simultaneously. On the other hand, if they fail to commute, there
always exists a limit for their variances - the uncertainty relation.

These conservation of physical quantities are closely connected with the symmetries of system. According to
Noether’s theorem, there exists a constant of motion F' corresponding to symmetry transformation Q.
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FIG. 3: Summary on Part IV.
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Yunbo Zhang
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Few problems in quantum mechanics - with either time-independent or time dependent Hamilto-
nians - can be solved exactly. This part is devoted to a systematic discussion of the approximation
methods used in quantum mechanics bound state problems, including the time-(in)dependent per-
turbation theory and variational approach. Within a semiclassical treatment, we shall address
the basic issues of interaction between light and atom. Some modern developments on adiabatic
approximation and Berry’s phase will be discussed.
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FIG. 1: Perturbation theory: A small perturbation modifies the wave functions and energies of the system.

I. STATIONARY PERTURBATION THEORY: NON-DEGENERATE CASE

One of the main problems in quantum mechanics is to solve the stationary Schrodinger Equation
Hy = Ey (1)

Cases that the equation can be solved exactly are comparatively rare. In most cases, the Hamiltonian becomes too
complicated to be solved exactly. Thus we had to turn ourselves to invoke help of approximation method. The most
frequently used method is perturbation method. . . .

The premise of perturbation theory is that the Hamiltonian H can be separated into two parts, Hy and H’

H=H, +H
in which H, is the main part and H’ is the perturbation.

H, is the principal part of the Hamiltonian that defines the system. Suppose we have solved the (time-independent)
Schrodinger equation for some potential (say, the one-dimensional infinite square well)

Hy 9 = EQw) (2)

obtaining a complete set of orthonormal eigenfunctions wéo) and the corresponding eigenvalues ESIO), which give the
wave motion and the corresponding energy values of the system under unperturbed condition. But unless we are very
lucky, we’re unlikely to be able to solve the Schrodinger equation (1) exactly, for more complicated potential.

H' is the perturbation. Its effects are much less than Hy. It only “modifies” the motion (wave function) and system
energy to some extent. Perturbation theory is a systematic procedure to calculate these modifications.

A. Order of approximation

In order to show the order of approximation, we add a parameter A to H’ so that

H=H, +\H'. (3)
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For the moment we’ll take A to be a small number; later we’ll crank it up to 1, and H will be the true, exact
Hamiltonian. Writing F,, and ,, and as power series in A\, we have

E,=E® + \EM + X2E®) 4 ... (4)
U =0 + M + XY@ - (5)

where Ef«bl), Eﬁf) are the first- and second-order perturbations to the n** eigenvalue, and w;” , 7(12) are the first- and

second-order perturbations to the n'” eigenfunctions, etc. Plugging Equations (4), (5), and (3) into Equation (1), we
have
(fo + ) (90 + 200 + A2+ )
= (BO + AED + XED 4 ) (00 4 Al + A0 + - )
To the zeroth order (A°) this yields
o 60 = B

which is nothing new just equation (2). To first order (A!)

Ho v + H'YD = EPYD + BNy (6)
To second order (\?)
Ho 92 + H'YD = B2 + Bl + B2y (7)

and so on. (I'm done with A, now it was just a device to keep track of the different orders - so crank it up to 1.)

B. First order approximation
Taking the inner product of equation (6), that is, multiplying by ( 20)) and integrating,
[0 {0 w0+ 0l = B + EDuO ) dx

But Hy is Hermitian, so

/wgo)*ﬁo wél)d?’r :E”(LO) /w’go)*d}’gl)d?)r

which cancels the first term on the right. So

B = [0 medds -, ®)
or in Dirac’s notation
ED = (¢ p) (9)

This is the fundamental result of first-order perturbation theory; as a practical matter, it may well be the most
important equation in quantum mechanics. It says that the first-order correction to the energy is the expectation
value of the perturbation in the unperturbed state.

To find the first order approximation of wave function 1/)7(3), we recognized that the zeroth order wave function
{wﬁlo)} is a complete set. The unknown 1/),(3) may be developed upon them,

e =3 a 'y
l#n



If we could determine the coefficients al(l), we’d be done. First we can show that ag) = 0, that is, there is no need to

include ! = n in the sum. A glance at Equation (5) reveals that any zpﬁ?) component in w,(f) might as well be pulled
out and combined with the first term. We are only concerned, for the moment, with solving the Schrédinger equation
(Equation (1)), and the v,, we get will not, in general, be normalized. Equation (6) then becomes

S 1 0 i 1 0
Ho S aMel” + A© = B S oMyl + EQp. (10)
l#n l#n

Taking the inner product with T gives exactly (9), while that with TG (m # n) leads to
ERal) + H,y = BVl

or

H/

(1) _ mn
a,,) = 7E7(10) - E,(,?).

The first order approximation of wave function 1/),(3) is thus

H/
(1) — E __tmn___(0)
1% - E,(lo) ianE,'?(??) ¢m (11)

m#n

or in Dirac’s notation

=3 (o1 )

—1/1(0) (12)

m

The first order approximation w,(,l) does not involve 7(10) itself - w,(LO) only appears in second-order approximation.

Notice that the denominator is safe, since there is no coefficient with m = n, as long as the unperturbed energy
spectrum is non-degenerate. But if two different unperturbed states share the same energy, we’re in serious trouble
(we divided by zero to get Equation 11); in that case we need degenerate perturbation theory, which will be discussed
in next section.

That completes first-order perturbation theory: Efil)

is given by Equation (8), and wﬁll) is given by Equation (11).

I should warn you that whereas perturbation theory often yields surprisingly accurate energies (that is, Ego) + Efll)

is quite close to the exact value F), the wave functions are notoriously poor.

C. Second order approximation

Now we turn to equation (7) for second-order approximation. Proceeding as before, we insert the first-order
wavefunction into the second-order equation and take the inner product with wﬁlo)

[0 o2+ B Y D) = O 4 ED Y a0+ B0 | e
m#n m#n
Again, we exploit the Hermiticity of H,
[0 o vt = [0 EQudr
so the first term on the left cancels the first term on the right. Moreover

Y [ w0 3 audate o

m#n



and we are left with

E® =3 oy / PO 17O gy
;én

m
-3,
m#n
_ Z 7rm nnL
(O) 0
m#n n

or finally

(13)

This is the fundamental result of second-order perturbation theory. We could proceed to calculate the second-
order correction to the wave function ( 7(12))7 the third-order correction to the energy, and so on, but in practice
Equation (13) is ordinarily as high as it is useful to pursue this method.

In summary we have
n :1/J(0)+1/J(1) +...

m#n

mn (0)
20 _ g U+
E,=E9 +E} +...

_ 1(0) ! ‘ mn‘
=EY + H,, + ; 0t

The condition for validity of this perturbation theory is that the perturbation Hamiltonian H’ should be small such

that the matrix elements H/, , H! . be small, i.e.

H, < ‘E,(fj) _ E,(LO)‘ .

D. Examples

Example 1 Charged Oscillator in Electric Field. Suppose we have an Harmonic oscillator

which carries electric charge e. A weak electric field € applies along the +x direction with static electric potential —ex.
The interaction of the oscillator with electric field is described by

H = —eei.
We have already known the zeroth-order states and energy
EO = (n + ;) hw
v = ).
The first order perturbation to the energy is evidently zero

EW = (n|H'|n) =0



Vx)

2 2 2
e 2my |-

FIG. 2: Charged harmonic oscillator in electric field: Perturbation and exact result.

As for the first order correction to the wave function, we need calculate the matrix element

H),, = (m| (—ect) |n)
= —ee _h (m| (@' + a) |n)
2mw
—ee %\/n—i—l m=n-+1
=\ —esy/5Vn m=n-—1
0 others
thus
H
WD = 3 oyl
m#n ET(L ) _E( )
_ H;H—l,n (0) H;z—l,n (0)
=0 a0 Ut e e Yo
En’ — EnJrl En’ — Enfl

ee | h o e | h (0)
= — —/ 1 —_— _— .
hw V 2mw nt iy hw V 2mw Vi

EY - E’£L0:|):1 = Fhw

where we have used

The second order correction to the energy is

E(Q) _ |H;L+1,n|2 |H;L71.,n|2
(= L = O
z—ﬁ(n—kl) h +e252n h :_6252
hew 2mw hw  2mw 2muw?
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which means the perturbation always lower the energy by an amount 5—=5. On the other hand this example can be

solved ezactly. The potential energy can be rewritten as

1 55 1 ee \2 e
—mw?x® —ecx = —mw” (T — 5) — 3
2 2 mw 2mw

which is just a shift of the harmonic potential as shown in Figure 2.

Example 2 Perturbation in infinite square well. The unperturbed wave functions for the infinite square well are
2 nmw n’n?h?
0) () = 4(*) g0 T
vn” (@) \/;SIH 0’ " 2ma?

Hybf?) = By

which satisfy

We perturb the system in three different ways (Figure 3) and solve the equation
Hiy, () = Epthy, () .
with

H=Hy,+H'

e Suppose first that we perturb the system by simply raising the “floor” of the well by a constant amount Vy (Figure

3). In that case H' = Vi and the first-order correction to the energy of the n-th state is
D = (0 (@) Vo [ (@)
= Vo (v (@) [ (@) = Vo

The corrected energy levels, then, are

E,=EQ9 +V,.

they are simply lifted by the amount V. The only surprising thing is that in this case the first-order theory yields

the exact answer. For a constant perturbation all the higher corrections vanish.

o If the perturbation extends only half-way across the well (Figure 3) then
B = [ @ Vorl? ()

= 2V 20 sin2 (n—wx> dr = E.
a Jo a 2

In this case every energy level is lifted by Vo/2. That’s not the exact result, presumably, but it does seem

reasonable, as a first order approximation.

e Finally we put a é-function bump in the center of the well

H’:a(?(:cfg)

where a is a constant. We have

B = (40 @) 1

Il

\

Q

<]

B

[\v]

—~
‘3
3
~—

/0 if n is even
o %oz if n is odd



)

.

N\

\

L

V(o) )
N\

V) ’ )
\

\ .

0 a/2 a

=

FIG. 3: Three ways of perturbation in infinite square well.

For even n the wave function is zero at the location of the perturbation (x = %), so it never “feels” H'. That is

why the energies are not perturbed for even m. The correction to the ground state is

(1) Z Hy (0)
1 0 0 djm ’
= B\ — Ey)

To find this we need

H/

ml

= (|1 [01”)

= za/oa sin (%x) 1) (ﬂc — g) sin (§x> dz
2

B zero if m is even
| non-zero if mis odd (m#n=1)



The first 3 nonzero terms will be m = 3,5,7. Meanwhile

B — g0 = T (2

™ 9ma?
s0
%1) _ Z (2ar/a) sin (%) )
0 0 m
msmr. B —E
2 2ma? -1 (0 1 () -1 ()
R (19% 1Tt Tt Tt

dmaa [2 (1 . 3 1 . 51 1 . s

- m\f(gn <x) ~ g (“’) g s (I> *)
mo  Ja [ . 3 1 . 57 1 . s

= 7r2h2\/; (sm (ax) - gsm (aa:) + gsm (ax> +>

The second order corrections E,(f) can be calculated by explicitly summing the series. We know

.,
E(2) _ § : | mn
" (0) (0)

with

mn

H, = <¢5jj>‘ H

o)
2 ¢ rmm a\ . /nw
= -« sin (—x) 1) (m — 7> sin (—x) dx
a Jo a 2 a
2 . /mm\ . /nTw
= Ea Sin (7) Sin (7)
which is 0 unless both m and n are odd in which case it is :I:%“

20\ 1
@ _ 2\ 1
EY= 2 (a) EO _ g0

m#n,odd
0 if n is even

= 2 . . .
{ 2ma® (22)" i Ytn odd ez if s odd

To sum the series, note that

1 101 1
n2—m2 2n\m+4+n m-n)’

Forn=1
Z_l (1_1>
23)57’ m+1 m-—1
SENA NN S SRS IS NS N
~2\4 6 8 2 6 8
_loy_ 1
=5 5) =
Forn=3
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FIG. 4: Perturbation theory in degenerate case.

In general, there is perfect cancelation except for the “missing” term in in the first sum, so the total is

2

e (—n) =— (2711)2. Therefore

E? —

n

0 if n is even
—2m (L)Q if nis odd

Problem 3 Zeng Jinyan, p309-310, 1,4

II. STATIONARY PERTURBATION THEORY: DEGENERATE CASE
A. Degenerate perturbation theory

The perturbation theory says that, in the absence of perturbation (A = 0), the system has its eigenfunctions and
eigenvalues, %(10)7 EO . 1f the perturbation is added (A = 1), the wave function is modified zbflo) — wéo) + wﬁf) 4y
and the energy leyel is shifted from its original value E,(LO) to E,(LO) + E,(zl) + - ... This should also be the case when the
energy levels of H, are degenerate. .

Consider a degenerate Hy under perturbation. ¢1, ¢2, @3, - , ¢ are orthonormal eigenstates of Hy corresponding
to the same energy EY. Typically, the perturbation H' will “break” the degeneracy: As we increase A (from 0 to 1),
the common unperturbed energy E,, splits into k (Figure 4).

Let us focus on two states, the upper state and lower state. The essential problem is this: When we turn off the
perturbation, the “upper” state reduces down to one linear combination of ¢;, and the “lower” state reduce to some
other linear combination of ¢;, but we don’t know a priori what these “good” linear combinations will be. For this
reason we can’t even calculate the first-order energy (Equation 8) because we don’t know what unperturbed states to
use.

For the moment, therefore, let’s just write the “good” unperturbed states (the zeroth-order wave function) in the
general form, that is, a certain superposition of ¢;

k
o =3V
i=1

(0)

keeping the coefficients ¢; ' adjustable. The first order perturbation equation is now changed into a new form

Hop(D + B0 = EPU(D + BDw
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k k
HoP + A"y e ¢ = EQuV + ED Y Vg,

i=1 =1

Left multiplying the above equation by ¢] and integrating over the entire space,
k
/ & {ﬁow,@ + H' Z Vg = EQp) + BED Y cf-o)sb,;} dr
i=1 i=1

and noticing the hermiticity of H,

[ ottiiat £ [ o dr
which cancels the first term on the left and that on the right. We get
Hhc(o) + lec(o) -+ Hikcch) = Egl)cgo)
with
= /¢;‘1—f{’¢jd3r.
Operating the above equation successively with ¢2, ¢3,...and ¢, We get k equations
HL A 4 HLe® 4 1L d® = B

Hy O + Hyyed + ..+ Hye ( )= EQef)

n

Hi Y + Hp el + .+ H;ch,io) = E,(ll)c,(co)

The condition for the existence of non-trivial solutions of {Cgo)} is

1
H,-eY  H, S H,
Hy  Hyp—En ... Hy | _,
H'/. H/ y ‘—”E(l)
k1 k2 e kk n

This equation has got a name secular equation after celestial mechanics. The k roots of the above algebraic equation

give the k possible first order perturbation energy Ej, (M and the corresponding solutions { (© )} give the corresponding

zeroth-order wave functions z/;n 9 Thus by solving the eigenvalue problem, we obtain in one stroke both the first order
enerqgy shifts and the correct zeroth-order wavefunctions.
The k degenerate eigenstates are reshuffled under the interaction of perturbation

k
(B, @)=Y e

k
(EM, @)=Y ei

The above are reshuffled zeroth order wave function and first-order perturbation energy.

If higher order perturbation is needed, these reshuffled wave functions can be used as appropriate zeroth order
wave functions, in this case, each reshuffled states can be considered as independent and results of non-degenerate
perturbation theory can be used to it despite the existence of others degenerate states.
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B. Stark effect of hydrogen atom

As an example of degenerate perturbation theory, let us study the effect of a uniform electric field on excited states
of the hydrogen atom. As is well known, the bound state energy of the hydrogen atom depends only on the principal
quantum number n. This leads to degeneracy for all but the ground state. To be specific, for the n = 2 level, there
is an [ = 0 state called 2s and three [ = 1 (m = 0,4-1) states called 2p, all with energy —e?/8ag. We label the four
states as

1
vV

3
$2 = 210 = Ra1Y10 = Ro1 (1) \/;cose

1 = 200 = RaoYoo = Rao (1)

3 .,
$3 =211 = Ro1 Y11 = —Ray (1) \/;sm&e @
3 . .
¢4 =211 = Ro1Y1-1 = Ro1 (7) g i fe= ¥

As we applied a uniform electric field € in the z-direction, the Hamiltonian of the system is divided into two parts
H=H,+H
where

fI——h—Q 24V (r)
0= QmV

and the appropriate perturbation operator is given by
H =-D-e, D= —er
H' =er-c=eercosh

The matrix elements

H, =ec / ¢rrcos 0¢;d°r =ee / R ()Y, (r cos G)Rnl(r)YlmerrdQ

= ee/ bel(r)rg’dr/ Y,y (cos 0)Y,,dQ2
0

Now we notice that the integration should be unchanged under the reverse of the coordinate r — —r, which corresponds

tod >m—0,p>mT—p, " —>7T
// Z:L}/lm cos 0dQ2 = // )/l:n}/lm COS(ﬂ' - Q)dQ

= 7// Y Yim cos 6dQ

So H/, = 0 for all <. Moreover, owing to the orthogonality of e/™#, only Hj, = Hj; is different from zero. To find this
non-zero matrix element, we calculate (¢1|eer cosf|ps) with

N
/N
[\
|
8=
N~~~
m‘
)|
Ikl
o

1 1
¢1 = thago = Wor (ao)

3
]- ]. 2 T _r_
= =— (= — ) e 20 cos
¢2 = Y210 Wors <a0) <a0>

e d ec 1 / (2 — L)(L)B_%ngr//coﬁ9sin9d9d</7
0

12 = 56_.3
327 ag ao 0

and get

4
= %(—72(10)% = —3ecag
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(You might think HY, is non-zero, but Hj, foﬂ sin? @ cos fsin 6d = 0). The secular equation for this system is

0— Eél) —3ecag 0 0

—3ecag 0—EY 0 0 |_,
0 o o0-BY o |
0 0 0 0-EY

The four eigenvalues for E;l) are 3ecag, —3ecayp, 0,0, respectively. It is straightforward to find the corresponding

eigenfunctions by solving the equation

—Eél) —3ecag 0 0 c§0>
—3ecag —Eél) 0 0 céo)
(1) © | =0
0 0 —E, 0 Cs
0 0 0 -—£e") \Y
For Eéo) + 3ecay, the normalized eigenvector is
1
R
V21 0
0
which gives the new zeroth order wavefunction
oy L, 1
( 2 )1 \/inOO \/51/)210
For Eéo) — 3eeayg, the normalized eigenvector is
1
1
V210
0
with the new zeroth order wavefunction
(0) 1 1
= — + _—
(13 ")2 ﬁwzoo \/iiﬁzm
For the two-fold degenerate eigenvalue Eéo) + 0, we have
0
0
x
Y

while z,y are undetermined. We thus take the original wavefunctions
(¢éo)>3 =1o1,1 = Ro1Y1 1
(¢§0))4 =211 =Ra1Y1

The presence of the electric field removes only partially the degeneracy. Schematically the energy levels are split into
three as shown in Figure 5. Notice the shift is linear in the applied electric field strength, which is known as the
linear Stark effect.

Problem 4 Griffiths, page, 266, Problem 6.9

Problem 5 Zeng Jinyan, p309-310, 2,5
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0 ((//200 _l//zm)/\/i E;0)+3eea0
E( ) :
2 YoV E2
(’//200 + WZIO)/\/E E;o)—3€8a0
(0) v v 0)
EI Ez

FIG. 5: Linear Stark effect of hydrogen atom.

III. VARIATIONAL METHOD

The perturbation theory developed in the previous section is, of course, of no help unless we already know exact
solution to a problem described by Hy. The variational method we now discuss is very useful for estimating the
ground state energy Ey when such exact solutions are not available. We should keep in mind the drastic difference
between variational method here and variational principle in classical mechanics.

Variational principle in classical mechanics is a fundamental principle in classical mechanics. Variational method
in quantum mechanics is mere an approximation method in finding out the eigenvalue of H in some instances. We
never bestow it too much importance. .

_The basic idea is try to conjecture a wave function 1y for a given system H, calculate the expectation value of
H using this wave function, and finally optimize the calculated result.

The physical principles here are: (1) the given H should have its own eigenvalues and eigenfunctions (not known

due to practical difficulties)

El,E2’...En...
’(/Jlana""ll}n"'

(2) the conjectured wave function )y can be expanded upon {¢,}, i.e. g =", ¢nthy, and (3) the expectation value
calculated using g is always larger than F

<H> = Z|Cn|2En > Ey

The variational method does not tell us what kind of trial wavefunctions are to be used to estimate the ground
state energy. Quite often we must appeal to physical intuition - for example, the asymptotic behavior of wavefunc-
tion at large distances. What we do in practice is to characterize trial wavefunctions by one or more parameters
Yo(r, A1, Ag -+ ) and compute (H) as a function of A, Ag--- .

— fwg(rvAlv)\Z"')I’:”l[)o(rvAl’)\Q.,_)d3r
g, A, e )ho(r, A, Ag - -+ )d3r

We then minimize (H (A1, A2---)) by (1) setting the derivative with respect to the parameters all zero, namely

(H(A1,A2--+))

(H(A1,X2--))
o\

O (H(A\,A2--+))
OAs

=0, =0,

(2) determining the optimum values of A1, Ay - - -, and (3) substituting them back to the expression for (H (A1, A2 -+ )),
which is the upper bound of the ground state energy of the system.
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y (%)

FIG. 6: Three trial functions for the variational method: Triangular (Black), Parabola (Blue), and more sophisticated one
(Red).

A. Ground state energy of 1D infinite square well

As an example, we attempt to estimate the ground state energy of one dimensional infinite square well

|0, for —a<z<a
Vi) = { +00, others

using three different trial functions. The exact results are, of course, well known

n=yfge (5)
w2 h?

B ="
' 8ma?

But suppose we did not know these. Evidently the wavefunction must vanish at x = 4a. Furthermore for ground
state the wavefunction cannot have any wiggles. We try three functions that satisfy both of these two requirements.

o Triangular trial wavefunction (Figure 6)

Ala + ), if —a<z<0
P(x) =< Ala—x), if 0<z<a
0, others
where A is determined by normalization
o[ [° ¢ 2 2 2a°
1=A| [/ (a+x)2dx+/ (a —x) dx}:|A| 5
—a 0



dy /dx

A

FIG. 7: The derivative of the triangular function.

In this case

A, if —a<zxz<0
d—w_: —A, if 0<z<a
dx 0, others

as indicated in Figure 7. Now the derivative of a step function is a delta function

‘jl%’ = A(z + a) — 2A8(x) + Ad(z — a)
and hence
() = _712%‘ _2 (5(x + a) — 25(x) + 6(z — a)) Y (w)da
— _71227‘3 ((—a) — 2¢(0) + 1(a))
= A ) - A

3h2 12 72n?

=5 = agr s 1.2159F,
which is larger than the exact ground state energy.
e Parabola trial wavefunction going through x = +a
Y() = a® — 22

16

where we have not bothered to normalize it. Here there is no variational parameter. We can compute (H) as
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follows

L 0 e
N ffa (a2 — :L'2)2 dz

h? —23a®  5K? 1072

2m %af’ T dma?  8ma?
10 w242

It is remarkable that with such a simple trial function we can come within 1.3% of the true ground state energy.

e A much better result can be obtained if we use a more sophisticated trial function. We try
A A
U(z) = la]” — |z| (14)
where A is now regarded as a variational parameter. Straightforward algebra gives

<H>=<A+1><2A+1>< 2 >

22 —1 4ma?

which has a minimum at

d(H)y 0 ((A+1)(2/\+1)>

) ) 22 —1
402 -4\ -5
— 5 =0
(2X — 1)
1

— A

(1 n x/é) ~1.72

T2

not far from n = 2 (parabola) considered earlier. This gives

_ (3+V6) (2+V6) ( »?
- ()

_5+2V6
-

8ma?

E; ~ 1.00298E;

So the variational method with (14) gives the correct ground state energy with in 0.3% - a fantastic result
considering the simplicity of the trail function used.

B. Ground state energy of Helium atom
1. Hamiltonian and trial wave function

The helium atom (Figure 8) consists of two electrons in orbit around a nucleus containing two protons (also some
neutrons, which are irrelevant to our purpose). The Hamiltonian for this system (ignoring fine structure and smaller
corrections) is

1, 1, e?
Py + 5 Py + V(ry) +V(re) +

E[:

2m |ry — ro .

Our problem is to calculate the ground-state energy, F, - the amount of energy it would take to strip off the two
electrons. (Given Ej it is easy to figure out the ”ionization energy” required to remove a single electron.) E, has
been measured very accurately in the laboratory

2

B, =—2.904=
ag
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IF1=r2l

+2e

FIG. 8: The Helium atom.

This is the number we would like to reproduce theoretically. The Schrodinger equation reads
ﬁ¢(r1, r2) = Ey(r1,r2).

It is curious that such a simple and important problem has no known exact solution. The trouble comes from the
electron-electron repulsion,

62

Via

- |

If we ignore this term altogether, H splits into two independent hydrogen Hamiltonians (only with a nuclear charge
of 2e, instead of e); the exact solution is just the product of hydrogenic wave functions

(r1,r2) = 1(r1)e(ra)
with energy
E=FE +E>

which satisfy

1. X
(Qmp% + V(Tl)) P(r1) = E1p(ry), Hiop(ry) = Erip(ry)
1. .
(0% + Vir2) ) 0(e2) = Ealea), aolez) = Eaolrs
and
Ze?
Vi) = -2
() = -2
Explicitly they are
Z3 _Z71 23 _Zrz
P(ry) = wage @0, B(r2) 786 e0
1 Z%met Z2e? K2
By =B, = = =
! 2 2 h? 2a0 = e
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Screening effect due to the existence of another electron will effectively decrease the charge Z. But we are not sure in
advance for how much. It is thus reasonable to regard Z as a variational parameter A. The trial function is thus

A3 a0 2 (ri+rz)

ry,.r 776
P(ry,r2) e

The constant A3/mad is still kept here to make sure the trial wave function normalized.
2. The expectation value

The expectation value of Hamiltonian is calculated as
n* _, 52 Ze?  Ze?

2(T1+7‘2) o g2 22 A2
///// 7“10 ( val V r1 T2

**(7‘1+7‘2 d3r1d3r2

|r1 — 1o wa%

The kinetic energy term for electron 1 is

A K2 Ay )
/ —e @ o (r1tT2) ( 2V%> —3¢€ arxo( i+ 2)d3T1d‘37’2
m

Tagy
2
// —B_W“ ( hV2> 6" @3y
Tag 2
_a 2 A A2\
= ///e a { < (—) + 2) e aAo”}rfdrldQ
7ra0 LS} Qo ap

B2 4\ n? A2
= / e ¥ (-2 +2%)de = —
2m a /o 2m aj

where we have used

AR L 1
/ e dr = ——e " (1 +2x+2x) =-
0 4 4

SO
232 232 1 2,2
[P [P Ae (15)

m a3  m ap h?/me? ag

(HA)y =

The potential energy term between electron 1 and nucleus is

3 2 3

/ %e—%(rﬁ-m) <Z€ >)\36_”'A(J(T1+T2)d3r1d3r2

Tay r ) may
_ 2\ _
i ()
7Ta0
Nz 2
= (—2¢*) 2 / e 2 gdy = — 225
ao Jo ()
SO
2\Ze? (16)

(H(N), = -

P ao
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Y

Yo

FIG. 9: Choice of coordinates for the ro-integral.

Finally we calculate the electrostatic interaction energy between two electrons

H(\ _ )\3 ? — 22 (py47y) 62 dS d2
( ()>mt*////// Tag e It — 1o rya rp

We shall do the rs integral first, for this purpose r; is fixed, and we may as well orient the ry coordinate system so
that the polar axis lies along ry (see Figure 9). By the law of cosines,

vy —ro| = \/r% + 73 — 27179 cos O

e 0"

.[2 = ///76131‘2
r1 — 12

22

S
:/// - r2 sin OadradOsdds
\/7“1 + 15 — 2r1re cos b

The ¢9 integral is trivial (27); the 0y integral is

and hence

s

/“ sin @5 " /12 + 13 — 2r179 cOS 0o
2 =
0 /77 +713 — 2rir9cos by r17T2 o
B VT2 713+ 2rre — /17 + 13 — 2r179
rir2

1
—@[(T1+T2)—|7“1—7"2|]—

L™ _2 oo o
I, =4rx (/ e 23”7‘%6[7‘2—1—/ e ié”mdm)
1 Jo 1
2 1 xT —+oo
= ﬂa—g (/ efzyyzdy—l—/ erydy>
A T Jo T

%, if’f‘g <7
if ro > 1y

T2’

Thus
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with
A A
T=—r1,  Yy=—T3
ap
We have
I 1/1 1 1 1
- —2y Qd I I 2 —2x —2x
x/o Y - <4 2906 Te e )
+oo
1 1
—2y _ —2x —2x
e Yydy = -e + —xe
/1 4 2
then
a1 1 1
124707_7—2x_7—2w
270 {4:5 1€ 1z
mag [1_ e 1 o
A |z z

It follows that (H())),,, is equal to

() [+

0

3.2

_ e /// { (1+A”)e—2%“} r1dry sin 0,d0, dé,
Tay ao

4/\3
a% /\2

The integral is 5/32 and we obtain

mn

6_2“ (1-(14z)e*)zd

5Xe?
8(10

(HA)) iy =

The expectation value of H is evidently the summation of equation (15), (16) and (17)

)\2 2 2 5 2
(HON) =22 —anz& 1 2\
ap aq ap

2

- <>\2 —2\Z + 5/\> <

8 ap

8. Optimization

According to the variational principle, this quantity exceeds E; for any value of Z. The lowest upper bound occurs
when (H (X)) is minimized
O (H(N)) 5
—— =22 -2Z+-=0
A M
from which it follows that
5
A=7—-—=1.
16 69

This is a reasonable result; it tells us that the other electron partially screens the nucleus, reducing its effective charge
from 2 down to 1.69. Putting in this value for Z, we find
5 5 5 5 ) e?

O = (2= S 222~ )+ 22 &

5 25 e?
7+ -7 - — ) —=-2.8—
( T3 256) 85a0
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Helium atom Z=2

1
.75 EV+EY
-2.85 Variational Method
-2.904 Experimental

(0)
'4 E11

FIG. 10: Ground state of helium atom: unperturbed (Black), experimental result (Green), perturbation result (Blue), and
variational result (Red).

4. Perturbation result

Suppose the interaction between the two electrons vanish, the zeroth order (unperturbed) energy is the sum of two
ground state energies of a single electron in the field of the nucleus Ze

One can treat the interaction term e?/|r; — ro| as perturbation H , and the first order correction result gives

Z3\° 2z 2 57 e?
Eﬁ):////// (mg)) c ii“l*”)i‘r St = o
0 1 — T2 ao

62 2

Y
ap ap

SO

S5Z
En=EY +EY = (—22 + 8)

These results are compared in Figure 10. The perturbation result is poor because the interaction between two electrons
is not necessarily small compared with the Coulomb attraction between the nucleus and the electrons.

Problem 6 Zeng Jinyan, page 311, 7 (Griffiths, page 294, Example 7.1), 9(Griffiths, page 310, Problem 7.13)), 10

Problem 7 (a) Use the variational principle to prove that first-order non-degenerate perturbation theory always
overestimates (or at any rate never underestimates) the ground state energy. (b) In view of (a), you would expect that
the second-order correction to the ground state is always negative. Confirm that this is indeed the case, by examining
Equation (13).
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IV. TIME-DEPENDENT PERTURBATION THEORY
A. Time evolution of quantum state

So far we have been concerned with Hamiltonians that do not contain time explicitly (essentially the potential energy
V(r,t) = V(r)), which might properly be called quantum statics. In that case the law governing the evolution of
the system is the time-dependent Schrodinger equation

L0 A
zhall/(r,t) = HU(r,t)

which can be treated by separation of variables
U(r,t) = ¢(r) f(2)-
We find the stationary solution ¢ by solving the time-independent Schrédinger equation
Hyp = Enhn,

then attach the time evolution factor

and the general solution is a linear combination

\IJ(I‘, t) = Z anwn(r)ei%Ent'

The time dependence of here cancels out when we construct the physically relevant quantity |\Il|2, all probabilities
and expectation values are constant in time. For example, suppose we have an initial state for the harmonic oscillator

Yo(z) + —=11(2)

1 1
Y(z) = NG NG

we immediately know the state at time ¢

1 .
7w1 (z)efzdwt/Q'

V(at) = Zstnle)e 4

V2
Similarly the initial state for hydrogen atom
1
V2

1

Y100 + NG

P(r, 0, ) = Pa11

will evolve with time as

1 i 1 i
U(r,t) = ﬁwlooeﬁElt + ﬁwmwf&t.

B. Time-dependent perturbation theory - quantum transition probability

If we want to allow for ¢ransitions (quantum jumps, as they are sometimes called) between one energy level and
another, we must introduce a time-dependent Hamiltonian (quantum dynamics). There are precious few exactly
solvable problems in quantum dynamics. However, if the time-dependent portion of the Hamiltonian is small compared
to the time-independent part, it can be treated as a perturbation. The purpose of this section is to develop time-
dependent perturbation theory, and study its most important application: the emission or absorption of radiation by
an atom. )

We consider a Hamiltonian H which can be split into two parts

H=H,+ H'(t)
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where H, does not contain time explicitly. Assume the problem for H' (t) = 0 has already been solved in the sense
that the energy eigenstates and the energy eigenvalues are completely known

ffoiﬁn = n"/}n (18)

and the general solution for Hy is given by
VO (r,t) = al g (r)e

We notice that in this case the coefficients a%o) are independent of time because the time dependence of the system is

completely governed by the exponential factor. A
We are interested in situations where initially ¢ = 0 only one of the eigenstates of Hy, say 1y, is populated

\I’(I', 0) =1y

As time goes on, however, states other than ¢ are populated because with H (t) # 0 we are no longer dealing with
“stationary” problems; the time evolution is (no longer as simple as e~ % Fx?) governed by

ih%\ll(r, t) = (HO + H) U(r, t). (19)

Quite generally the time-dependent perturbation H’ (t) can cause transitions to states other than 1. The essential
question here is: What is the probability as a function of time for the system to be found in v, with m # k?

The general wavefunction can still be expressed as a linear combination of eigenstates 1, (because they constitute
a complete set). The only difference is that the coefficients are now time-dependent, i.e.

U(r,t) = Y an(thn(r)e 75
Substitute this into the Schrédinger equation (19)
0 . . ;
S a0t A5 = (4 1) S an i 5
performing the differentiation, and using the eigenvalue equation (18), we obtain
ihY " an () (r)e” FE £ N B an (£, (r)e” 7 B0t
= I:IO Z an(t)q/}n(r)ei%E"t + Z an(t)ﬁ/wn(r)ei%Ent

where the second and third terms cancel. Multiplying w;(r)e_%Emt and integrating over the entire space, the
orthonormality of the basis vector ¢, leads to an equation for the coeflicients

iham (t) = Z an (t)H!, etmnt (20)
where

Hyy = [ 000 0)r = (6 10, )
Winn = (Em — Ey) /R

Equation (20) is the matrix form of the time dependent Schrodinger equation in the Hy representation. Its solutions
rely on the initial condition at ¢ = 0 and the perturbation Hamiltonian.

For a very weak perturbation H' < Hj, we can solve equation (20) by a process of successive approximations,
as follows.
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e Zeroth Order: If there were no perturbation H' at all, then
ihaO(t) = 0 = al9(t) = const.

(We use a superscript in parentheses to indicate the order of the approximation) Suppose initially the system is
prepared in one of the eigenstates of Hy, say 9y

[47%% (0) = 6mk
then it would stay this way forever
a9 (t) = G (21)

e First Order: Insert the zeroth-order values on the right side of (20)

Zha%) (t) = Z a1(10) (t)H/ etwmnt Z (;nkH,/nn Wmnt _ H;nkeiw"‘kt
n
we get the first order approximation

an’ m/ ma(tr)e"m iy (22)

e Second Order: Now we insert this expression on the right

. 1 t , ,
Zha(Q) Z a(l) esznt _ = Z/ Hr/Lk (tl)ew"’“tl dtlH;me“"m"t
n 0

to obtain the second-order approximation (change t; to ty and ¢ to t1, the second integration is for 1)

1\? t g , .
@0 = () X [ [ deat e e 23)

The physical process corresponding to the second order application involves an intermediate state n, i.e. the
transition starts from initial £ to n, and then from n to the final state m, which is known as indirect transition
or two-photon process. The probability is much smaller than that for the direct transition.

In principle, we could continue this process indefinitely, always inserting the nth-order approximation into the right
side of Equation (20) and solving for the (n + 1) th order. This is known as Dyson series after Freeman J. Dyson,
who applied this method to covariant electrodynamics (QED). For small perturbation we need only consider the first
order approximation. According to the statistical interpretation of the coefficients a,,(t), during the action time of
perturbation ¢, the transition probability from the initial state iy to the final state 1, is

2

2 1 t )
Pmk(w:‘ag(t)‘ — = / H | (t)emtdty (24)
0

Example 8 Suppose the 1D harmonic oscillator is perturbed by a time-dependent potential

P
V(z,t) = 7(711_6_(’5/7)2x

where T is the characteristic interaction time. Initially at t — —oo the system is in the ground state. Let us check the
probability of the system can be found in n-th excited states

2
+oo PO

\f

B o (55 oo

P 2
\/>
|<n|x|0>\ T exp( 27’2/2)

2 1 '
P = llgll)(t: +OO)‘ = <ﬂ‘$|0> (t/‘r)zeznwtdt

2
1

h2

1
h2
2

h?

(n|z[0) 7v/7 exp (—n*w?r?/4)
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Y H'(r,p,t)

0 T

FIG. 11: Constant perturbation.

Evidently for very large T
PnO —0

The system remains in the initially populated state at all times whenever the perturbation is added very slowly. This
is the so-called adiabatic approximation. We will come back to this in next section. On the other hand, for a very
short perturbation duration T, P,o — 0, the system again won’t be changed, which is known as sudden perturbation.

C. Constant perturbation

Further analysis is possible only if we choose a specific form for the time dependence of the perturbation. As an
application of equation (24), let us consider a constant perturbation turned on at time ¢ = 0 for a duration T

A H'(r,p) 0<t<T
!/ _ ) I
H(rvpvt){o’ t>T

(See Figure 11.) To first order we have
1 T, 1 etwomkT _ ]
(1) ™ = —H' / m)mktdt e o
am ( ) ih mk 0 e ih mk Wk
so that the quantum transition probability from state k to state m is given by

2
2

2 [Houl
K2

eiomiT/2 (iomiT/2 _ g=iwmiT/2)

iwmk
_ Hy ) sin® (0 T/2)

h? (ka/2)2

This is shown in Figure 12. We notice that there exists a peak around w,,; = 0, i.e. E,, = Ej with the peak value
proportional to

sin? (W T/2) 72

Wrnk—0 (ka,/Z)Q o

In a certain range of FE,, the transition probability is nonzero, which means that the system may jump to many
states in the neighborhood of Fj. Furthermore the curve shrinks with increasing duration 7', and the area under
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24T 24T @

FIG. 12: Transition probability under constant perturbation for different duration 7.

the curve increases with T'. If there were only one final state, we would get an unreasonable result: the probability
that the system remains in the initial state k is quadratic (T'?), not linear, in the time interval, while transition to
other states changes irregularly. The only explanation is that the final state forms a continuous energy spectrum in
the neighborhood of Ej. We should sum the probability over all possible final states, which is nothing but the area
under the curve proportional to perturbation duration 7. In this sense, the transition probability per unit time is a
constant.

The total probability is thus summation over all final states

P Z| k| sin? (WmkT/2)
m w k/2)

It is customary to define the density of the final states as the number of states within energy interval (E, E + dE) as
p(E)dE, which changes the summation into an integral for continuous spectrum

As T — oo, we may take advantage of

. lsin®az
alglgo ; Oél'2 5($)
It follows that
mk /2
S TID) s 12) = S TS(E — B )
T— o0 (wmk/Q)

It is convenient to consider the transition rate, that is, the transition probability per unit time
12 a2

|Hmk| S (wka/2)
R T (wn/2)”

the delta function here essentially means the energy conservation in quantum transition. The total transition rate to
all final states is given by the integration

2
Wity = P/ T = = = |H} " 6(En — Ey)

w=P/T = /‘ Hy|” 20 (B — Ex)p(Em)dE,
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fico Aico

Em Y Ek

FIG. 13: Stimulated emission: Quantum system gives up hw to V' - possible only if initial state is excited; Absorption: Quantum
system receives hw from V' and ends up as an excited state.

For small energy interval of the final states, suppose H, , and p(E,,) change smoothly with E,,, one has
2, 2
w= T Hl, P p(E) (26)

This formula is of great practical importance; it is called the Fermi’s golden rule even though the basic formalism
of time dependent theory is due to Dirac.

D. Sinusoidal perturbation
We shall now specialize to a sinusoidal time dependence of the perturbation, since it is often encountered in practice
H'(r,p,t) = A(r,p) cos (wt) = F(r, p) (e + et
so that
H) . = Fnk (em + eii‘“t)
where
Fok = <¢m|p|¢k>

Substitute this into the first-order formula (22), at time T we have

1 T , .
a(T) = .*ka/ e mit (et e dt
ih 0

1 ei(wmk+w)T -1 ei(wmkfw)T -1
ih i (Wimk + w) i (Wmk — w)
ka 1— ei(wmk+w)T 1— ei(wmkfw)T

+
h < Wk +w Wk — W >

Let us now consider the behavior of this amplitude in the limit |wT'| > 1. Provided the denominators do not vanish,
this amplitude remains bounded as T increases. But if w,,x +w — 0 the first term will grow in proportion to T, and if
Wk —w — 0 the second term will grow in proportion to 7. These are both conditions for resonance. Because w > 0,
the first of them, hw = Ey — E,y,, is the condition for resonant emission of energy; and the second, fiw = E,,, — Ey, is
the condition for resonant absorption of energy by the system. Near a resonance it is permissible to retain only the
dominant term. The validity of perturbation theory at resonance is assured only if F},; are small.
We consider the case E,, — E) > 0, and retain only the resonant absorption term. Then the absorption probability
is given by
9 |ka|2 ‘1 o ei(wmk—w)T‘Q |ka|2 sin2 ((wmk;w)T)

1 ~
’asn) (T)‘ FLQ 2 - FLQ (Wm,g*w)Q ,Em = Ek + ﬁw

(wmk - W)
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FIG. 14: Elastic scattering of plane wave by some finite range potential.

By the same token we have the emission probability

E,, ~ Ej, — hw

. 2 - 2 (Wmktw)T
’2 _ ‘ka‘z |1 _ el(wmk+w)T| B |ka|2 sin (%)

(1)
a,.’ (T =
‘ m ( h2 (wmk+w)2 h2 (wm§+w)2

Formally passing to the limit 7' — oo, the transition rates are given by means of equation (25)

(1) ’
27r
‘ IkaI §(Ep — By, + hw)

= 1.
s = i,
Similarly we need a continuous factor to get a reasonable interpretation. This time the initial state k is again fixed
so the continuous factor may comes from that the final state E,, is in continuum, like the situation of photo-electric
effect. Or, suppose both Fy and E,, are fixed, the perturbation itself is continuous, which means Aw covers a range -
it is not monochromatic. The Fermi’s golden rule in harmonic perturbation reads

2T
w= " |Epi|? p(Epy & hw). (27)

To summarize, for constant perturbation, we obtain appreciable transition probability for & — m only if E,, ~ E.
In contrast, for harmonic perturbation we have appreciable transition probability only if E,, ~ Ej — hw (stimulated
emission) or E,, ~ Ej, + hw (absorption) (see Figure 13)

E. Elastic scattering

We take the example of elastic scattering as an application of the Fermi’s golden rule. In 1D the particles are
scattered by a potential barrier - there are only two possibilities, reflection or penetration. We can define the
corresponding coefficients R = j,./j;, T = j:/j; with T + R = 1. In 3D, however, the incident particles along z-axis
may be scattered to different directions and the probability exhibits an angular distribution, see Figure 14. For elastic
scattering, the momentum is conserved, i.e. |p| = |po|. Take the incidental particle as a box-normalized plane wave

v = 1 eip(yr/h

VI3 ’
and regard the target particle as perturbation V (r), the scattered wave will be in a state

ws — 1 eip-r/h )

VI3

The matrix elements are calculated as

7ip-r/hv(r) 1 eipo-r/hdSr

1

mk / VI3 NGE
1 .

== / V (r)ei(Po—P)r/hi g3y
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FIG. 15: Three ways in which light interacts with atoms.

Suppose the density of states for the outgoing particle in a small phase volume is p, we know
pdE = AxAyAzAp, Ap,Ap, /h* = L*p*dpdQ/h* = LPmpdQdE /h?
where we have used for free particle
E =p*/2m, dE = pdp/m
The Fermi’s golden rule gives the transition rate
w =2 | p(E)

2

2 1 .
=T /V(r)e’(po_p)'r/hd% L3mpdQ/h?

T R LS

The angular distribution of scattered particles in a particular process is described in terms of a differential cross
section. Suppose that a flux of j; particles per unit area per unit time is incident on the target. The number of
particles per unit time scattered into a narrow cone of solid angle df2 centered about the direction whose polar angles
with respect to the incident flux are 6 and ¢, will be proportional to the incident flux j; and to the angular opening
dQ of the cone. Hence it may be written as w = j;0 (0, ¢) dQ2. The proportionality factor o (6, ) is known as the
differential cross section. In our case the incident flux is

. ih .
Ji = _T(wi Vi — i V7))
m
_1lr
T L3m
which gives
w m? 2

o (0,¢)

= _ — V(r)e®o—P)r/h g3,
4idQ  (2wh2)? / x)

Problem 9 Zeng Jinyan, page 341, 2,3 (Solution, page 404, 10.2,10.4 (constant perturbation)

V. SEMICLASSICAL TREATMENT OF EMISSION AND ABSORPTION OF RADIATION

Our basic knowledge about the structure of atoms comes directly from the study of interaction between light (which
is essentially one kind of electromagnetic wave) and atoms. An atom in one of its lower states can absorb a passing
photon of the right energy and be raised to a higher energy state - a process called absorption. Or, the same atom in
one of its higher levels can absorb a passing photon and get to a lower level by emitting two photons - a process called
stimulated radiation. Furthermore, even in the absence of a perturbing external electromagnetic field, the atom in
one of its higher levels can still get to a lower level by emitting a photon - a process called spontaneous radiation.
These three processes are shown in figure 15. Two important observables are the frequency and the relative strength of
the spectral line, which are related to the energy difference and the transition rate. For a more rigorous treatment we
need quantum electrodynamics to quantize both the electric field and atom. Here we adopt a semiclassical method to
discuss the absorption and stimulated emission, that is, the electric field is treated as a classical field, while the atom
is a quantum mechanical system. This method fails for the spontaneous radiation. Interestingly it may be explained
by a concept called detailed balance according to Einstein.
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A. Absorption and stimulated emission of light

An electromagnetic wave (T'll refer to it as “light”, though it could be infrared, ultraviolet, microwave, X-ray,
ete.; these differ only in their frequencies) consists of transverse (and mutually perpendicular) oscillating electric and
magnetic fields

E=Eqcos(wt —k-r)
B =Bgpcos(wt—k-r).
For a Gaussian system, |Eg| = |Bg|. The electric part of the interaction scales as eEg, while the magnetic part as

e(v x Bg)/c with v/¢ < 1. An atom, in the presence of a passing light wave, responds primarily to the electric
component. The atom, then, is exposed to a sinusoidally oscillating electric field with the perturbation Hamiltonian

H =-D-E=-D-Egcos(wt —k-r),

with the electric dipole moment D = —er. The transition induced by this dipole moment is called electric dipole
moment approximation. If the wavelength is long compared to the size of the atom (For visible light, the wavelength

A ~ 4000 — 7000/01, which is much larger than the Bohr radius ag), we can ignore the spatial variation in the field, i.e.
k-r~a/A < 1. The electric field is applied homogeneously on the atom, so

H = —D - Eqcos (wt) = % (€™ + et

with W = —D - Eq. The first-order transition rate for sinusoidal time dependence of the perturbation gives
21 |\ Wk 2
h 2
T
=5 [Woke|” 3 (wimie £ w)
= # D |? B2 cos? 08 (wni + w)

where 6 is the angle between D and Ey. We shall be interested in the case of an atom bathed in radiation coming
from all directions, and with all possible polarizations. What we need is the average of cos? § in all directions

cos2h = — // cos? 0dQ = — // cos? 0 sin Odfdyp

7,/ cos? 981119d6’71

SO
™ 2 2

But this is for a monochromatic perturbation, consisting of a single frequency w. In many applications the system
is exposed to electromagnetic waves at a whole range of frequencies; in that case we need integrate over a frequency
range dw with density of states

_ 1
ey - E

p(w) = o -

1] — 2
= EE%COSQ(A}t— 4772T/ dt cos® wt = 8—E0

where the average is taken in a period T' = 27 /w. The energy density E2 should then be replaced by [ dw8mp (w). We
have the total transition rate induced by incoherent, non-polarized natural light (to be more specific, for absorption)

472
Wmk = 32 |Dmk|20(wmk)
471'262

352 |rWLk | P (wmk)
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Evidently the transition rate is proportional to the energy intensity in the field p (wmx) and the matrix element |r,,|.
This leads to the selection rules in quantum mechanics.

Suppose we are interested in systems like hydrogen, for which the Hamiltonian is spherically symmetrical. In that
case we may specify the states with the usual quantum numbers n, [, and m, and the matrix elements are

(n'U'm/|r|nlm)

Clever exploitation of the angular momentum commutation relations and the hermiticity of the angular momentum
operators yields a set of powerful constraints on this quantity.

e Selection rules involving m and m': Consider first the commutators of L. with %, 9, and z, which we worked
out earlier

[L.,2] = ihg,
[i/zvy] = 77’71:%5
[L.,2]=0

From the third of these it follows that
0= <n'l’m'|[ﬁz, 2]|nlm> = <n’l'm’| (f)zé - éﬁz> |nlm> = (m' —m) h{nl'm’|2|nlm)

So unless m’ = m, the matrix elements of 2 are always zero. Meanwhile, from the commutator of L, with & and
1 we get

<n’l'm’\[ﬁz,§c]|nlm> = <n'l’m'| (ﬁzsﬁ - ﬁcﬁz) |nlm>
= (m' —m) h(n'U'm/|Z|nlm) = ih (n'U'm|j|nim)
<n’l’m’\[ﬁz,y]|nlm> = <n’l’m’\ (f/zg) — gﬁz) \nlm>
= (m' —m) h(n'U'm/|gInlm) = —ih (n'I'm’|Z|nlm)
S0
(m' —m)” (WU |&|ndm) = (0'U'm/|&|nlm)
and hence either (m’ —m)® = 1 or the matrix elements of 2 are zero. So we obtain the selection rule for m
No transition occurs unless Am = +1,0

This is an easy result to understand if you remember that the photon carries spin 1, and hence its value of m is
1,0, —1; conservation of (the z-component of) angular momentum requires that the atom give up whatever the
photon takes away.

e Selection rules involving  and {’: From the following commutation relation (Check it!)
[L2,[L?,v]] = 2R (rL? + L?r)
we can get the selection rule for [
No transition occurs unless Al = +1

Again, this result (though scarcely trivial to derive) is easy to interpret: The photon carries spin 1, so the
rules for addition of angular momentum would allow I’ =1+ 1,1,1 — 1. For electric dipole radiation the middle
possibility — though permitted by conservation of angular momentum - does not occur.

Evidently not all transitions to lower-energy states can proceed; some are forbidden by the selection rules. The
scheme of allowed transitions for the first four Bohr levels in hydrogen is shown in Figure 16. Note that the 25
state 1ogo is "stuck”: It cannot decay, because there is no lower-energy state with [ = 1. It is called a metastable
state, and its lifetime is indeed much longer than that of, for example, the 2P states ¥211, %210, %21—-1. Metastable
states do eventually decay, either by collisions or by magnetic dipole or electric quadrupole transitions, or by
multi-photon emission.
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FIG. 16: Allowed decays for the first four Bohr levels in hydrogen.

B. Einstein’s treatment of spontaneous emission

It is well known that an atom in an excited state will spontaneously emit radiation and return to its ground state.
That phenomenon is not predicted by this version of the theory, in which only the atom is treated as a quantum-
mechanical system, but the radiation is treated as an external classical field. A more rigorous calculation requires a
quantum theory of the electromagnetic field. Nevertheless, Einstein was able to deduce some of the most important
features of spontaneous emission in 1917, when most of the quantum theory was unknown. The argument below,
derived from Einstein’s ideas, is based on the principle that the radiation mechanism must preserve the statistical
equilibrium among the excited states of the atoms.

We first define the absorption and stimulated emission coefficients. Let the number of atoms in state k be nyg,
and consider transitions between states k and m involving the emission and absorption of radiation at the frequency
Wik = (Em — Ex) /h > 0. We have calculated the transition rate for an atom to absorb radiation. It has the form

Wmk = Bmk:p (wmk)
where

472 e?

By = — <
Y

|rmk|2

and p (wpk) is the energy density of the radiation at the angular frequency wy,r. Therefore the rate of excitation of
atoms by absorption of radiation will be

Bukp (Wimnk) N
Einstein assumed that the rate of de-excitation of atoms by emitting radiation is of the form
Bkmp (wmk) Ny, + Akmnm-

The first term corresponds to stimulated emission, which we have shown how to calculate. The second term, which is
independent of the presence of any radiation, describes spontaneous emission. At equilibrium the rates of excitation
and de-excitation must balance, so we must have

Bkmp (wmk) Ny + Akmnm == Bmkp (wm,k) ng

Invoking the principle of detailed balance, Einstein assumed that the probabilities of induced emission and absorption
should be equal: B,,x = Bgm. This relation was confirmed by our quantum-mechanical calculation above. Further-
more, we know that in thermodynamic equilibrium the relative occupation of the various atomic states is given by
the Boltzmann distribution, so we must have

nk/nm — e(EmL_Ek:)/kT — ehw'mk/kT
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with k the Boltzmann constant and 7T is the temperature. Therefore we may solve for energy density of the radiation
field at equilibrium

p\&mik) = Bkmnk/nmfl
Akm 1

- Bkm ehwmk/kT _ 1

But Planck’s black body formula tells us the energy density of thermal radiation

3
h Wk

7203 ehwmi /KT _

P (ka) =

Comparing the two expressions, we conclude that the spontaneous emission rate is

3

_ hwmk
Akm - 2.3 Bkm
mee

which relates the spontaneous emission probability to the induced emission probability that has already been cal-
culated. This relation, derived before most of quantum mechanics had been formulated, remains valid in modern
quantum electrodynamics.

VI. SCHRODINGER PICTURE, HEISENBERG PICTURE AND INTERACTION PICTURE

In the historical development there appeared two different views on the time evolution of the system:

e Schrodinger Picture: It is considered that it is the state of the system that is evolved, i.e., the state evolves from
|¥(r,0)) into |P(r,t)) as time goes from 0 to ¢t. As consequences of the state evolution, all results we can draw
from the system evolve along with it.

e Heisenberg Picture: It is considered that the state of the system does not change with time and will stay as it
was. It is the dynamical variables (operators) that evolve with time.

These two points of view are equal in explaining the evolution of the system and can be transformed into each other
through suitable transformation.

A. Schroédinger picture

In an arbitrary representation, state |¥(r,0)) is expressed as a vector. As time flies, the vector evolves, at time ¢,
the vector reaches |¥(r,t)). We can define the time evolution operator U(t,0) as

[W(r,t)) = U(t,0) [¥(r,0))
The Schrédinger equation is now

m% (U(t,0)[¥(r,0))) = H (U(t,0) [T(r,0)))

The initial state is arbitrary, so we have the Schrodinger equation for time evolution operator

L d -

zh%U(t, 0) = HU(t,0) (28)
Our first task is to derive formal solutions. There are three cases to be treated separately.

Case I The Hamiltonian operator H is independent of time ¢. The Hamiltonian for a spin magnetic moment interacting
with a time-independent magnetic field is an example of this: H ~ S-B. The solution in such a case is given by

U(t,0) = e~ wHt, (29)
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For simplicity we take as an example the harmonic oscillator initially in its ground state

mw)1/4 _1lmw .2
e 2

W (,0)) = () = (ﬁ .

2
. 1
H = Zp—m + imuﬂxz

Action of time evolution operator upon |¥(z,0)) gives
U(t,0) |¥(2,0)) = e~ 7ty () = e~ H oty (z) = W(a,t)

which is just the solution of time-dependent Schrodinger equation. Similarly, for a superposition state of the
ground state and the first excited state

0 (2,0)) = \%%(:ﬁ) + %wm)

at time ¢ we get

Z5e FE (@) = W(a)

1 i
7675%%0@) 4

U(t,0) ¥ (z.0)) = —

Case II The Hamiltonian operator H is time dependent but the H’s at different times commute. As an example, let us
consider the spin magnetic moment subjected to a magnetic field whose strength varies with time but whose
direction is always unchanged. The formal solution in this case is

U(t,0) = e~ Jo &' HE) (30)

Case III The H’s at different times do not commute. Continuing with the example involving spin magnetic momentum,
we suppose, this time, that the magnetic field direction also changes with time: at ¢ = ¢1 in the z-direction, at
t =ty in the y-direction, and so forth. Because S, and S, do not commute, H(¢1) and H(t2), which go like
S - B, do not commute either. The formal solution in such a situation is given by

U(t,0)=1+§: (—;)n/otdtl /Otl dtz---/otnl dt,H(t))H(ty) - H(ty) (31)

which is an alternative form of Dyson series.

What are some properties we would like to ascribe to the time evolution operator? The first important property
is the unitary requirement for U(t,0) that follows from probability conservation (See Sakurai, Modern Quantum
Mechanics, page 70)

Ut t,0) = U(t,0)"" or Ut (t,0)U(t,0) = U(t,0)UT(£,0) =1
This assures that the state must remain normalized to unity at all later times if it is initially normalized to unity
(U(x,00¥(x,0)) =1 = (U(x,t|V(x,t)) = <\I'(x,O|UT(t,O)U(t,O)|\IJ(:1:,O)> =1

The expectation value of an observable Aona non-stationary state may change with time, i.e.

(A(0)) = (W(x,0/41%(x,0))
and

(A1) = (W(w, | A9 (z,1))
may differ from each other. Another feature we require of the U operator is the composition property

Ulta, to) = Ulta, t1)U(t1,10) (32)

It says that if we are interested in obtaining time evolution from ¢ty to t2, then we can obtain the same result by first
considering time evolution from ¢y to t;, then from ¢; to ts, a reasonable requirement. Note that we read equation
(32) from right to left.
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B. Heisenberg picture

There is another formulation of quantum dynamics where observables, rather than state kets, vary with time, known
as Heisenberg picture. It is important to keep in mind that under a unitary transformation that changes the state
kets, the inner product of a state bra |a) and a state ket (| remains unchanged

(Blay = (BIUTU|a) = (Blev)

We can infer how <6|f7' |a> must change

(BIFla) — {(B1UT} F{U |a)} = (8] (U FU) |a)
This suggests two approaches to unitary transformations
Approach 1 |a) — U |a), with operators unchanged
Approach 2 F' — UTFU, with state kets unchanged
Motivated by the Approach 2, we define the Heisenberg picture observable by
Aty = Ut (t,0)A%U(¢,0) (33)

where the superscripts H and S stand for Heisenberg and Schriodinger, respectively. At ¢ = 0, the Heisenberg picture
observable and the corresponding Schrodinger picture observable coincide

At (0) = A5

The state kets also coincide between the two pictures at ¢ = 0; at later time ¢ the Heisenberg picture state ket is
frozen to what it was at t = 0

[W(r, 1))y = [¥(r,0))
independent of ¢. This is in dramatic contrast with the Schrédinger picture state kets
W(rd))s = U(H,0) [¥(x.0))

The experimental measurement must give the same result in these two pictures. In fact, the expectation value (A(t))
is obviously the same in both pictures

s (U(rt| A [W(rt )>s = (U(r,0)| UTAU [¥(r,0))
a (U, )| A7) [0 (r, )

or

We now derive the fundamental equation of motion in the Heisenberg picture. Assuming that Ag does not depend
explicitly on time, which is the case in most physical situations of interest, we obtain by differentiating equation (33)

dA"(t)  oUt(t,0) ASU.0) 1 U, O)AsaU(t,O)

dt ot ot
— ——UT(t 0)HASU(t,0) + UT(t 0)ASHU(t,0)
_ ! (UTHU) (UT ASU ) (U*AS ) (UT HU)

[

zh
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where we have used equation (28) and its conjugate. The Hamiltonian was originally defined in Schrodinger picture.
In elementary applications (Case I), U(¢,0) depends solely on H as e~ w1t

result, the Hamiltonian operator has the same form in both pictures

and obviously commutes with H, as a

A -utau = A%
so it is all right to write the equation of motion for operator as
ih thH( ) = [AH, H} (34)

Historically, this equation was first written by P. A. M. Dirac, who - with his characteristic modesty - call it Heisen-
berg equation of motion. Note that for Heisenberg picture, there is only Heisenberg equation for operators and
no Schrédinger equation for wavefunctions. And if an operator AS commute with H in Schrédinger picture, it also
does in Heisenberg picture. Indeed

m%AH@) _ AT - fAn
= UtASUH - HUTASU
=UYASHU — UTHASU
—uf (ASEI - IMS) U

ie. if AS is a conservative quantity in Schrodinger picture, it also does in Heisenberg picture. In discussing the
conservative quantities in Schrédinger picture, we arrived at the result that

h% (4) = (Af - iA)

if A does not explicitly depend on time. This should not be confused with Heisenberg equation here because they are
discussed in different pictures.

To conclude let us summarize the differences between the Schrédinger picture and the Heisenberg picture in the
following table.

‘ Schrédinger picture ‘ Heisenberg picture ‘
Wavefunctions | |U(r,t))g = U(t,0) [¥(r,0)) | |¥(r,t)), =|¥(r,0))
Dynamical equation|ih- |U(r,t)) 4 = H |¥(r, 1) g unchanged
Operators AS AT (1) = UT(t O)ASU( ,
Dynamical equation unchanged zh AH W
()5 = Ay

C. Interaction picture

In dealing with the problem of quantum transition, it is more convenient to use the interaction picture, which is
in between the Schrédinger picture and the Helsenberg picture. The premise for this is that our Hamiltonian H can
be divided into two terms H = Hy + H’, where HOA is a stationary Hamiltonian and does not depend on time. The
perturbation H’ is time dependent. The effects of Hy and H' are different in inducing transitions. Initially the state
of the system

0) = Z an'¢n
n
where 1),,’s are the eigenfunctions of Hy. If only H, exists, that means, no perturbation present, the evolution of the

state would be
= Z anwne_ﬁEWt
n
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. 2 A
The probability of finding the system in state v, is |a,e”#F»t| | which does not change with time. Thus, Hy has no

effect in causing transitions. Only the perturbation H' induce transitions. The interaction picture is a modification
to Schrodinger picture that makes the effect of H' more prominent and is very powerful in treating the transition
problems.

Definition of state in interaction picture: In Schrodinger picture the state of the system at any time ¢ is expressed
by

[W(r,1))s = U(t,0)[¥(r,0))

where U(t,0) comprises both the effect of Hy and H’. The interaction picture “deducts” the effect of H, in the final
state by defining the interaction picture state vector |¥(r,t)); as follows

U (r, ), = Ug ' (£,0) [¥(r, 1) g = Ug ' (£,0)U(t, 0) [¥(r, 0))
where
Uy (t,0) = en ot
is the inverse of evolution operator of Hy. So
[W(r,0); = eF o U (r, 1)) (35)
Definition of operator in interaction picture: We define
A = Uy (t,0)AsUo(t,0)
= e%Hﬂt/lse_%ﬁot (36)
This is a natural result as the expectation values obtained in two pictures must equal each other
(A) =1 (W(rt| AT ¥ (r,0)),
— (W(r,t| e~ # 10t (e%HotAse—%ffot) e ot | (v 1))
=s (U(rt| As |(r,1)g

Dynamical equation in interaction picture: We now derive the fundamental differential equation that characterize
the time evolution of a state ket in the interaction picture. Take the time derivative of equation (35)
0 0
th— |Y(r,t)), =ih
(),

_ %ﬁot

o (cF w(e,0).)

= —Hoet B0t W (x, 1)) g + e 0t ("‘gt IW<r7t>>s)
—Hoeh B |W(r, ) + et (Ho + AE) 19(r,0) 6

= eH O I W (r, 1))
= (e%ﬁgtﬁ'se*%ﬁot) (e%ﬁot |U(r, t)>5>
we have

i U, 0), = ] U(r, 1), (37)

This is the Schrodinger-like equation with the total Hamiltonian replaced by H I

i

Hy = et ot frye= i ot

which is the perturbation in interaction picture. The change of |¥(r,t)), with time is solely decided by H}. The
initial states [¥(r,0)), and [¥(r,0))q are the same and will be denoted by |¥(r,0)) hereafter. We can also show for

an observable A that does not contain time explicitly in Schrodinger picture

ih%fl[(t) - [Af, ffo} (38)
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which is the Heisenberg-like equation with the total Hamiltonian replaced by Hy. In many aspects, the interaction
picture, or Dirac picture, is intermediate between the Schrodinger picture and the Heisenberg picture. This should
be evident from the following table.

Schrédinger picture | Interaction picture | Heisenberg picture

Wavefunctions|Evolution determined |Evolution determined No change
by H by H'
Operators No change Evolution determined|Evolution determined
by H, by H

Integration of the Schrédinger-like equation by iteration: Consider the evolution of the system from time ¢t = 0 to
arbitrary time ¢. Integration the equation directly gives

i ([T (r, 1)), — [T (r,0) / Hy () [T (x, ), d

W 0) = (W0, + 5 [ ) W), ar

The |¥(r,t")),; appeared in the integrand is itself an unknown state vector to be searched. Repeat the above procedure
by substituting [¥(r,t’)), with the above formula gives the following result

W(r, 1)), = |9 / (e {|¢ro> / ) [T (e, 1)), dt”}d’

= (e, 0)), + iﬁ [ ey, ar

2t t’
+<Zlﬁ) /dt’/ dt"Hy(#YH (") [¥(r, ")),
0 0

The above argument can be repeated once and once (iteration) to give the solution |¥(r,t)); in series form

|U(r,t)); =[¥(r,0)), Oth-order - no perturbation

ot A
+ %/ dt1Hy(t1) [¥(r,0)), Ist-order - H} acted at t;
0
1 2 t t1 R . N
+ (zh) / dtl/ dtoHy(t1)Hy(t2) [¥(r,0)); 2nd-order - Hy acted at to and then ¢
0 0

1\3 t t1 t2 ~ R .
() [ [ [T anme ) ) vy, +
0 0 0

Transition amplitude: We reconsider the problem of quantum transition in interaction picture. The system starts
out initially in one of the eigenstate |¢)) at time ¢t = 0, i.e |¥(r,0)); = |[¢x). We want to know the transition rate to

another eigenstate |i,,) under the perturbation H'. We have the zeroth order result

<wm|\II(ra0)>I = <"/)m|7/}k> = Omk

and the first order transition amplitude

¢m| /dtle (t1) |vw) = /dtl (V| Hj(t1) [
= _7/ dty (| e B0t FL (21 ) e R H0M |y
Zh 0

1 ¢ i _i A
:%/ dtyenBmtre=wErte (o | HE(t1) 1)
0

1/t .
= ﬁ / H;nk(tl)ezwmktldtl
0
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We arrive at the same result as in time-dependent perturbation theory equation (22). The second-order transition
amplitude appears to be

1 2 t t1 . R 1 2 t t1 A ~
ol (35) [ [ ety o = (5) [an [ a ol e e o)
1 2 t1 ~ R
ol GO R AXCICRE ) SESIUNEATRIIN
1 2 t t1 . ] ~ ]
= <Zﬁ> ;/0 dtl/o dtzH{nn(tl)ezwm"tlH;Lk(tg)ezw"ktz
(2)

where we have inserted the complete relation of |¢),,). This is nothing but the second-order result a,,’ (¢) in (23).

VII. ADIABATIC APPROXIMATION AND BERRY’S PHASE

Imagine a perfect pendulum, with no friction or air resistance, oscillating back and forth in a vertical plane. If
one grabs the support and shake it in a jerky manner, the bob will swing around in a wild chaotic fashion. But if I
very gently and steadily move the support, the pendulum will continue to swing in a nice, smooth way, in the same
plane (or one parallel to it) with the same amplitude. This gradual change in the external conditions characterizes an
adiabatic process. Notice that there are two characteristic times involved: T;, the ”internal” time, representing the
motion of the system itself (in this case the period of the pendulum’s oscillations), and T, the ”"external” time, over
which the parameters of the system change appreciably (if the pendulum were mounted on an oscillating platform,
for example, T, would be the period of the platform’s motion). An adiabatic process is one for which T, > T;.

In quantum mechanics, the essential content of the adiabatic approximation can be cast in the form of a theorem.
Suppose that the Hamiltonian changes gradually from some initial form H; to some final form H;. The adiabatic
theorem states that if the particle was initially in the nth eigenstate of H;, it will be carried into the nth eigenstate
of Hy if we assume that the spectrum is discrete and non-degenerate throughout the transition from H; to Hy.

For example, suppose we prepare a particle in the ground state of the infinite square well (Figure 17)

)= on ()

If we now gradually move the right wall out to 2a, the adiabatic theorem says that the particle will end up in the

ground state of the expanded well
1 T
f - e (7 )
P! (x) \/; sin 5

(apart, perhaps, from a phase factor). Notice that we’re not talking about a small change in the Hamiltonian (as in
perturbation theory) — this one is a huge change. All we require is that it happen slowly. Energy is not conserved
here: whoever is moving the wall is extracting energy from the system, just like the piston on a slowly expanding
cylinder of gas. By contrast, if the well expands suddenly, the resulting state is still ¥(x), which is a complicated
linear combination of eigenstates of the new Hamiltonian. In this case energy is conserved; as in free expansion of a
gas into the vacuum when the barrier is suddenly removed, no work is done.

A. Proof of the adiabatic theorem

The adiabatic theorem is simple to state, and it sounds plausible, but it is not easy to prove. Suppose the the
Hamiltonian is independent of time, then a particle which starts out in the nth eigenstate 1,

f{¢n = En¢n
remains in the nth eigenstate, simply picking up a phase factor

U, (t) = hpe” Fnt/,
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2a -
2a X

X
2a

FIG. 17: Particle starts out in the ground state of the infinite square well. If the wall moves slowly, the particle remains in the
ground state. If the wall moves rapidly, the particle is left (momentarily) in its initial state.

If the Hamiltonian changes with time, then the eigenfunctions and eigenvalues are themselves time dependent and we
have the instantaneous eigenequations

H(t)n(t) = En(t)in(t) (39)
At any particular instant the eigenfunctions still constitute an orthonormal set
(ton ()| m (1)) = Snm
and they are complete, so the general solution to the time dependent Schréodinger equation

) -
ih U () = HHE(?) (40)

can be expressed as a linear combination of them

U(t) = ea(t)pn(t)e’®® (41)
where

0, () = _% /0 "B ()t (42)
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generalizes the “standard” phase factor to the case where E,, varies with time. Substitute equation (41) into (40) we

obtain
zhz (én¢n + Cnthy + icnwnén) el = Z Cn (ﬁwn) e'fn
(dot denotes the time derivative) In view of equations (39) and (42), the last two terms cancel, leaving

Z C.nd}neien = - Z qujjneien

n n

Taking the inner product with v,,, and invoking the orthonormality of the instantaneous eigenequations

Z enbmmne’fn = — Z Cn <¢m|¢n> oifn

n

or
em(t) = = 3 n (Ut ) €00

Now differentiating the instantaneous eigenequations (39) with respect to time yields
Hipy + Hipy = Bty + Enthy,
and hence (again taking the inner product with ,,)
(Yl Bl ) + (Yl Bl ) = Endun + En ($rnltr)
Exploiting the hermiticity of H to write <¢m|ﬁ |1/)n> =F,, <wm|z/}n>, it follows that for n # m
(mH1Yn) = (Ba = En) (Ymltn)

Putting this into equation (43) and assuming the energies are non-degenerate we conclude that

. . (6l o) . o
em(t) = —cm <¢m|¢m> - Tgncnﬁ exp <_h/0 (En(t) — En(t')) dt )

This result is exact. Now comes the adiabatic approximation. Assume that H is extremely small, and drop the second

term, leaving

Cm(t) = —Cm <¢m|wm>
with the solution
e (t) = ¢ (0)erm D

where

Ym(t) =i /0 t <wm(t’)£,wm(t’)> dt’

In particular, if the particle starts out in the nth eigenstate, i.e. ¢,(0) = 1 and ¢,,,(0) = 0 for m # n, then at time ¢,

W, (1) = e O Oy (1)

it will remains in the nth eigenstate of the evolving Hamiltonian, picking up only a couple of phase factors.

(44)
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Equator

FIG. 18: Itinerary for adiabatic transport of a pendulum on the surface of the earth.

B. Nonholonomic Processes

Let us return to the classical model I used above to develop the notion of an adiabatic process: a perfectly frictionless
pendulum whose support is carried around from place to place. I claimed that as long as the motion of the support
is very slow, compared to the period of the pendulum (so that the pendulum executes many oscillations before the
support has moved appreciably), it will continue to swing in the same plane (or one parallel to it), with the same
amplitude (and, of course, the same frequency).

But what if I took this ideal pendulum up to the North Pole, and set it swinging — say, in the direction of Portland
(Figure 18). (For the moment, I'll pretend the earth is not rotating.) Very gently (that is, adiabatically), I carry it
down the longitude line passing through Portland, and on beyond, down to the equator. At this stage it is swinging
north-south. Now I carry it (still swinging north-south) partway around the equator. And finally, I carry it back
up to the North Pole, along the new longitude line. It is clear that the pendulum will no longer be swinging in the
same plane as it was when I set out—indeed, the new plane makes an angle © with the old one, where © is the angle
between the southbound and the northbound longitude lines.

As it happens, O is equal to the solid angle () subtended (at the center of the earth) by the path around
which I carried the pendulum. For this path surrounds a fraction ©/27 of the northern hemisphere, so its area is
A= (1/2)(0/27)4rR?> = OR? (where R is the radius of the earth), and hence

0=A/R*=Q

This is a particularly nice way to express the answer, because it turns out to be independent of the shape of the path
(Figure 19).

Incidentally, the Foucault pendulum is an example of precisely this sort of adiabatic transport around a closed
loop on a sphere—only this time instead of me carrying the pendulum around, I let the rotation of the earth do the
job. For an explanation on why the Foucault pendulum proves the earth rotates, see animations and rollovers by the
California Academy of Sciences. http://www.calacademy.org/products/pendulum/index.html

The solid angle subtended by a latitude line 6y (Figure 20) is

Q= /sin@d@dgﬁ) =271 (—cos ) |5° = 2m (1 — cos bp)

Relative to the earth (which has meanwhile turned through an angle of 27), the daily precession of the Foucault
pendulum is 27 cos 0y — a result that is ordinarily obtained by appeal to Coriolis forces in the rotating reference frame,
but is seen in this context to admit a purely geometrical interpretation. For example, at the North Pole, the daily
precession is 360° while at San Francisco, it is about 225°.

A system such as this, which does not return to its original state when transported around a closed loop, is said
to be nonholonomic. My project here is to study the quantum mechanics of nonholonomic, adiabatic processes. The
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FIG. 19: Arbitrary path on the surface of a sphere, subtending a solid angle 2.

Z

FIG. 20: Path of a Foucault pendulum in the course of one day.

essential question is this: How does the final state differ from the initial state, if the parameters in the Hamiltonian
are carried adiabatically around some closed cycle?

C. Berry’s Phase

We have showed that a particle which starts out in the nth eigenstate of H (0) remains, under adiabatic conditions,
in the nth eigenstate of H(t), picking up only a time-dependent phase factor. Specifically, its wave function is

U, (t) = ei[en(t)ﬂn(t)]wn(t)

where

0, (1) = —%/O B, (1)t
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—iEnt/h

is the dynamic phase (generalizing the “standard” factor e to the case where E,, is a function of time) and

Tn(t) = i/ot <wn(t’)|£,wn(t')> dt’

is the so-called geometric phase.
Now 1, (t) depends on time because there is some parameter R(t) in the Hamiltonian that is changing with time.
In the example Figure 17, R(t) would be the width of the expanding square well. Thus

D _ Ou dR
ot  OR dt

— ! / aw” dR ! Ry 3%
Yn(t) —Z/O <1/1n(t) (9R>dt’dt —Z/Ri <1//n 8R>dR

where R; and Ry are the initial and final values of R(t). In particular, if the Hamiltonian returns to its original form
after time T, so that R; = Ry, then 7, (T") = 0 - nothing very interesting there!

However, I assumed in equation (45) that there is only one parameter in the Hamiltonian that is changing. Suppose
there are N of them: R;(t), Ra(t), - Ry (t); in that case

(45)

SO

o ~om, di T om, di Ry a ~ \VEVn) G

where R = (Ry, Ra, - Ry ), and /g is the gradient with respect to these parameters. This time we have
Ry
nlt) =i [ (] ) - R

and if the Hamiltonian returns to its original form after a time 7', the net geometric phase change is

Mn(T) = z’f«m VR Yn) - dR (46)

This is a line integral around a closed loop in parameter space, and it is not, in general, zero. Equation (46) was first
obtained by M. V. Berry in 1984, and ~,(T") is called Berry’s phase. Notice that 7, (T) depends only on the path
taken, not on how fast that path is traversed (provided, of course, that it is slow enough to validate the adiabatic
hypothesis). By contrast, the accumulated dynamic phase,

1 T
00(T) = -+ / B, (t)dt
h Jo
depends critically on the elapsed time. It is easy to check that Betty’s phase is real and can be measured. In fact

VR <wn|wn> =0

because 1), is assumed normalized. So

(| VR ¥n) is imaginary = 7, (t) is real.

Another question is that: Is Berry’s phase measurable? We are accustomed to thinking that the phase of the wave
function is arbitrary — physical quantities involve |\I/|27 and the phase factor cancels out. But ~,,(T") can be measured,
if (for example) we take a beam of particles (all in the state ¥) and split it in two, so that one beam passes through
an adiabatically changing potential, while the other does not. When the two beams are recombined, the total wave
function has the form

1 1. .
U= -, + ~Pgpet
5 o+2 o€
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where ¥ is the”direct” beam wave function, and I' is the extra phase (in part dynamic, and in part geometric)
acquired by the beam subjected to the varying H). In this case

1 , 4
O* = 1%o* (1+eT) (1+e7T)
L o2 2 2
=3 [To|” (14 cosT) = |Tg|” cos” (T'/2)

So by looking for points of constructive and destructive interference (where I' is an even or odd multiple of T,
respectively), one can easily measure I'. Berry, and other early writers, worried that the geometric phase might be
swamped by a larger dynamic phase, but it has proved possible to arrange things so as to separate out the two
contributions.

VIII. SUMMARY ON PART V

There are quite few examples in Quantum Mechanics which permit exact solutions. We need in most cases the
approximation methods. The stationary perturbation theory can be applied to evaluate the corrections to the discrete
eigen-energy levels and eigenfunctions if the Hamiltonian H can be separated into two parts, Hy, whose solutions are

exactly known, and the small perturbation H' satisfying H, < ‘Em ~ g )
For non-degenerate case one usually calculate the corrections to energy levels to second order

2
E :E(O) +H/ Z mn
" n (0) (0)
m#n En’ — Em

and the corrections to eigenfunctions to first order

o) (0)
2 E<0> FONECLC
m#n =N
For degenerate case, by solving the secular equation
1
v, -V H], R H,
H), H)y — En7 ... Hl, 0
H, H, ... H,—EY

one obtains in one stroke both (1) the k possible first order energy shifts EY (the k roots of the above algebraic

equation) and (2) the k possible correct zeroth-order wavefunctions (the corresponding k eigenfunctions { (0 )} which

is nothing but the combination coefficients of ¢; - the k degenerate orthonormal eigenstates of Hy corresponding to
the same energy ET(LO)). One good example of this is the Stark effect of atoms under electric field.

The variational method on the other hand is very useful for estimating the ground state energy Eo when the exact
solutions are not available for Hy. We get closer to the exact result if we use a better trial function. A sophisticated
calculation for the ground state of helium atom gives

(H(N) . :—2.8557

min ao

a better result than that from perturbation theory.
Time-dependent perturbation theory is responsible for quantum transition probability. To first order the transition
probability from initial state k to final state m reads

2

/ H Zwmktl dtl

For constant perturbation the transition rate is determined by the Fermi’s Golden rule

2 2
= | Hl? plE)

Poi( ‘ (1)

h2
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while for sinusoidal perturbation H'(t) = F (e 4+ e~™'), we have
2 2
w=— |Erke|” p(Er + hw)

A semiclassical treatment for the absorption and emission of radiation is developed as an application of the time-
dependent perturbation theory. One has the Einstein coefficients

472 e2

2

Bk = Brm = o Tk
hesp i

Akm = 72c3 Bkm

and the selection rules for electric dipole moment transition
No transition occurs unless Al = £1, Am =0, +1

Three pictures are equivalent in describing the evolution of the system and the main differences are already summa-
rized in the two tables. We emphasize that the interaction picture is often used in the quantum transition problem.
Finally the adiabatic approximation and Berry’s Phase are still very hot fields in current research. We mention here
only two key formula

W, (1) = e OOy, (1)

(T = i f (] 7 ) - AR
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In this part we develop a systematic treatment of angular momentum and related topics. Spin,
a special quantum mechanical angular momentum without classical counterpart, will be introduced
to distinguish Bosons and Fermions. Permutation of identical particles gives symmetric requirement
of the many-particle wavefunctions. Coupling of two angular momenta leads to the famous Clebsch-
Gordon coefficients.
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FIG. 1: Example for illustrating the noncommutative property of finite rotations.

I. ROTATIONS AND ANGULAR MOMENTUM
A. Commutation relation

Angular momentum is closely related to the rotation in 3D. Rotations about the same axis commute, whereas
rotations about different axes do not. The result of successive rotation depends on the order of rotations. For
example, let us consider a 90° rotation about the z-axis, denoted by R, (7/2), followed by a 90° rotation about the
z-axis, denoted by R, (7/2); compare this with a 90° rotation about the x-axis, followed by a 90° rotation about the
z-axis. The final results are different, as can be seen in Figure 1. So the order of successive finite rotations doesn’t
commute.

Now we consider an infinitesimal rotation da around axis n. As in Part IV of this lecture notes, the convention
we follow here is that a rotation operation affects the physical system itself as in Figure 1, while the coordinate
axes remain unchanged. Had we adopted a different convention, in which a physical system remained fixed but the
coordinate axes rotated, the transformation matrix is the transpose of physical system rotated convention. It is
obviously important to distinguish the two approaches by using “active rotations” for physical system rotated and
“passive rotations” for the coordinate axes rotated. See Ballentine’s book Section 7.5 for clarification.

It is important to be aware that when the abstract vector ¥(r) is represented as a function of space-time coordi-
nates r, there is an inverse relation between transformations on function space and transformations on coordinates.
Transformation invariance means that the value of the new function at the transformed point is the same as the value
of the original function at the old point, i.e. ¥'(r’) = ¥(r). For a rotation in Euler’s angles,

R(a, 8,7)¥(r) = ¥(R™ (e, B,7)r).

So an active rotation will rotate the radius vector r into

Ry(da)r=r+dér=r+da(nxr)
as we can see from Figure 2 in Part IV.
Two successive infinitesimal rotations, first by da around z-axis, followed by §8 around y-axis, change the vector

like

r—r —r”’



or

R,(6a)r =1" =1+ da(xg X 1)

Ry(68)Y =1 =1/ + 3B(yo x ¥')
Notice the vector product formula

Ax(BxC)=(A-C)B-(A-B)C
the net result is
Ry (38)R.(5a)r = R, (68)r" =1 + 6B(yo x ')
=r+da(xg X r)+ I8[yo X (r+da(xg X r))]
(

=1+ da(xg Xr)+d8(yo X r) + dadByo X (x0 X r)]
=1+ da(xo x 1) +6(yo X ) + dad B [(yo - T)x0 — (o - Xo)1]

Let us now change the order of rotation, first by 65 around y-axis, followed by da around z-axis, we have
Ry (0a)Ry(08)r =1 + dav(x0 X 1) + 68(yo x r) + dad 3 [(Xo - T)yo — (X0 - Yo)r]
It follows that the difference of them is
{Ry(08) Rz (dc) — Ry (6) Ry(68)} v = 6dB[(yo - v)%g — (X0 - )y
= dadB(r - yo)xy — (r - Xo)yo] = dadB (r x (xo X ¥o)) = dad B (r X 2)

= —dadB (zo x t) =1 — R.(6a6p)r
= {Rn(0) — R.(3adf)}r

where we have used
1= Ru,(0)
with n stands for any rotation axis. Thus the final result can be written as
Ry (6B)Ry(6a)) — Ry(6a) Ry (68) = Ra(0) — R.(60dp) (1)

This is an example of the commutation relations between rotation operators about different axes. We use this to
deduce the commutation relation of angular momentum in quantum mechanics.

So far we have not used quantum mechanical concepts. The matrix R is just a 3 X 3 orthogonal matrix acting on a
vector. In quantum mechanics, however, wavefunctions live on Hilbert space. We use Dirac’s notation to represent a
state ket |a). Given a rotation operation R, characterized by a 3 x 3 orthogonal matrix R, we associate an operator
D(R) in the appropriate ket space such that

|} = D(R) |e)

Note that the 3 x 3 orthogonal matrix acts on a column matrix made up of the three components of a classical vector,
while the operator D(R) acts on state vectors in ket space. The matrix representation of D(R) depends on the
dimensionality of the particular ket space in question. For N = 2, appropriate for describing a spin-1/2 system with
no other degree of freedom, D(R) is represented by a 2 x 2 matrix; for a spin-1 system, the appropriate representation
is a 3 X 3 unitary matrix, and so on.

To construct the rotation operator D(R), it is again fruitful to examine first its properties under an infinitesimal
rotation. The appropriate infinitesimal operator could be written as

Q=1—icF (2)
with a Hermitian operator F' which is called the generator of transformation Q. Specifically,
F— &, e —ox
h
for an infinitesimal translation by a displacement dx in the z-direction, and

F— = =6t

>



for an infinitesimal time evolution with time displacement J¢. Similarly we define the angular momentum operator
Ji in such a way that the operator for an infinitesimal rotation around the k-th axis by an angle da can be obtained
by letting

F— ﬁ, € — du
h
in equation (2). More generally, we have

Da(6a) = 1— %(j ‘n)sa 3)

for a rotation about n by da (Notice that minus signs are missed in eqgs. (7.17) (7.20) and (7.21) in Ballentine’s book).
Specifically

D,(ba)=1— %50&@

7 o

Dy(‘sﬂ) =1- ﬁ‘SﬂJy
Amwwmzl—%wwi

A finite rotation can be obtained by compounding successively infinitesimal rotations about the same axis. For
instance, if we are interested in a finite rotation around z-axis by angle ¢, we consider

~ N
oo g (1-52)

= exp ( ijz¢>
- A

We have from the rotation analogy of equation (1)
1—fwj 1= Ssad,) = (1= Load 1—5wj =1- 1—15mﬁ
R hoe hote RO7 ) = A

N 2 .
1 PN ~A A~ 7 ~
<ﬁ>&mﬂ%k‘kﬁothWL

Because da and 63 are two arbitrary infinitesimal rotation angles, we thus have the commutation relation

>

wdy — Jyde = ihJ, (4)

By the same token

>
>
>
>

. — J.J, = ih,
Jodw = Jpd. =i,

3l

which are exactly the same results as we have got in Part IV by defining the angular momentum to be ¥ x p. In
general, when the generators of infinitesimal transformation do not commute, the corresponding group of operation is
said to be non-Abelian. Because of equation (4), the rotation group in 3D is non-Abelian. In contrast, the translation
group in 3D is Abelian because p; and p; commute even with ¢ # j.

We emphasize that in obtaining the commutation relations (4), we have used the following two concepts:

e Jj is the generator of rotation about the k-th axis
e Rotations about different axes fail to commute.

It is no exaggeration to say that these commutation relations summarize in a compact manner all the basic properties
of rotations in 3D.



B. Eigenvalue and eigenvector of angular momentum

We use a new symbol J to represent the angular momentum because the discussion here applies to angular mo-
mentum operators defined more generally by equation (3), which may be orbital, spin, total, even isospin angular
momentum. This is important because spin angular momentum, to which our general formalism also applies, has
nothing to do with ¥ and p. We can construct the Casimir operator

JP= I+ T+ T2

which commute each component of J. The fundamental commutation relations for general angular momentum reads

and
|:j27ji:| :Ov i:x7y7z

We work out the eigenvalues and eigenfunctions of J? and J, and derive the expression for matrix elements of angular
momentum operators, first obtained in a 1926 paper by M. Born, W. Heisenberg and P. Jordan.
Define two non-hermitian operators

j:t = jx :tijy

which are known as ladder operators. It follows that

Indeed,

[J.,J | = ihJy + i(ihJy) = —hJ, +ihJ, = —hJ_
and
Jiodo = (Jo +idy)(Jo —idy) = T2+ J2 —i(Judy — JyJs)
=J2+ J2+ k], =J% = J+hl.
JoJy =2+ T2 +i(Jedy — Jydy) = J* — J2 — .

JyJ_ —J_Jp =2nJ,
We denote the eigenfunctions of J2,.J, by |j,m)

T2 |j,m) = X; 1, m)
Jo1j,m) = mh|j,m)
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both eigenvalues A; and m are to be determined. What is the physical meaning of ji? To answer this, let us examine
how J, act on Ji |j,m). It is easy to show that Ji |j,m) are also eigenvectors of J,

-+ hdy)[jm) = (m+ Dh(]4 |j,m))
To(J-ljym)) = (J-J. = hJ-) |j,m) = (m = D)A(J- |j,m))

except that its eigenvalue is now increased (decreased) by one unit of & becoming (m 4 1)h. So now we see why J4,
which step one step up (down) on the “ladder” of J. eigenvalues, are known as the ladder operators.

Then start from a simultaneous eigenvector J2, jz, |7,m) , we could apply j+ successively, say n times, to obtain
another eigenvectors of J?,J. with the J, eigenvalue increased by nh, while its J? eigenvalue is unchanged

e J2jmY — J_[jm)  lim) = Jy ljm) = J2 [Gm) =
Aj Aj Aj Aj Aj
(m—2)h (m—1)h mh (m+1)h (m+2)h

However, this process can not go on forever: Eventually we’re going to reach a state for which the z-component
exceeds the total, and that cannot be. It turns out that there must exist two eigenvectors |j, mmax) and |j, Mmin),
such that

j+ |7, Mimax) = 0 (5)
J_ |ja mmin> =0 (6)

Stated another way, the eigenvalue of m can not be increased beyond muy.x (decreased below myyy).
Equation (5) also implies

j— j+ |.77 ml‘ﬂaX> =0

But

JoJ. =23
SO
(J2 =02 = B ) . mmax) = 0
Because |j, mmax) itself is not a null ket, this relationship is possible only if
Nj—m2 B — mpaxh® =0
or
Aj = Mumax (Mmax + 1)7° (7)

In a similar manner, we can argue that Equation (6) also implies

T d_ |, Mumin) = 0
By writing j+j_ as
JoJ =24 ni
and
(J2 = J2 4 L. 1 anin) = 0
Aj— m2. h? +mupinh? =0

min



we conclude that
)\j = Mmin (mmin - 1)h2 (8)

By comparing (7) and (8)

Mmax(Mmax + 1) = Mmin (Mmin — 1)
we infer that
Mmin = —Mmax
or
Mmin = Mmax + 1
which can not happen. Call my,.x = j, which is positive, and the allowed values of m lie within
—j<m<j

Clearly, we must be able to reach |j,j) by applying j+ successively to |j, —j) a finite number of times. We must
therefore have

J—(—j) = 2j = positive integer

As a result we get

..n
173
i.e., j is either an integer or a half-integer.
1.3
J: Oa ia 17 57 .
while m may take 25 + 1 different values j,j5 — 1,5 — 2,--- — j. The basic eigenvalue equations now read
J21j.m) = §(j + )h° |, m) (9)

jZ |ja m> = mh |j7 ’ITL>

C. DMatrix elements of angular momentum operators

When we try to figure out the matrix elements of various angular momentum operators, only eigenvectors of the
same j should be taken into account because elements of different j’s all vanish trivially. Assume |j,m) is normalized,
we obviously have

<j/, m' j2

(im0

7, m> =0 + 1)h*6;i6mim

J-

4, m> = B8O

To obtain the matrix elements of ji, we first consider

j,m> - <j,m’(j2 . hjz> j,m>
=R [j(j+1) —m®—m] (10)

<jam ’jj-j-i-

Now J |j,m) must be the same as |j,m + 1) (normalized) up to a multiplication constant. Thus

Ty lj.m) = ¢l [j,m +1)



Comparison with (10) leads to

et P = B2 [ + 1) — m(m + 1)]

. + .
So we have determined c;,,, up to an arbitrary phase
convention. So

factor. It is customary to choose it to be real and positive by

Jiljm) =~/ —m)(j +m+ Dhlj,m+1)

Similarly we can derive

J_ljym) = /(G +m)(j —m+ D)hljm 1)

Finally we determine the matrix elements of J to be

<jl7m/ ’ji

Let us turn to some examples. The simplest case is

l4,m) =

)
2

The matrices of J2 and .J, are 2 x 2 and diagonal

We have

J?|j,m) = J?

j’m> = \/(] F m)(] +m+ l)hdj’j6m/7ni1

the matrices for j = % with two eigenstates

11\ [1 1

2'2/712° " 2

11 1 3,1
—(=+1Dr?*|= = -
35U 2’m> 1 2’m>

- 3p2 0 3 10
2 1 _ Y32
7= ( 0 2n%) 2" o1
5 i 0 1.(1 0
= (2 —
J: <0 —3h 20 -1
while for ji, simple calculation
~ |11 ~ |1 1 11
T+ 2’2>_0’ + 2"2>—h'272>
~ 11 1 1 ~ |1 1
J’2’2>_h‘2’_2>7 J’27‘2>—0
gives the matrices
5 0n 5 00
(o) =)
Therefore
- 1. .. h{01 N P
Jx—2(']++‘]—)_2<1 O)’ Jy_%(J+_J—)_2<Z' 0)
The next simplest case is j = 1 where we choose
|¢1> = |17 1>, |¢2> = ‘17O>7 ‘¢3> = |17_1>

Evidently

J2|1,m) = j(j + DR [1,m) = 262 |1, m)



The matrices are now 3 x 3

2h2 0 0 100
JP=10 2r2 0 | =2r2(010],
0 0 2r? 001
A RO 0 10 0
J.=100 0 |=nr[00 O
00 —h 00 —1
Acting J, on |¢;) gives
j+|1a1>207 j+|170>:\/§h|171>7 j+|1a_1>:\/§h|1a0>
ie.
) 0 v2r 0
Jy=10 0 +2n
0 0 0
Similarly
J_[1,1) = V2h1,0), J_[1,0) = v2h1,-1), J_[1,-1)=0
ie.
0 0 0
Jo=1|Vv2n 0 0
0 V2h 0
The combination of them gives
Ne)
1. ﬂ 2h¢Q Ja [0Lo0
szi(J++J,): ¥2h 0 %2h :TFL 101
0 2r 0 010
N2 .
R 9 Pah Y vz (010
Jy==Jy—J )= iX2h 0 — 2Kl =—h|i 0 —i
21 2 2 2 .
0 2r 0 0 ¢ 0

Having obtained the matrix elements of .J, and J, we can study the rotation operator D(R). If a rotation R is
specified by i and ¢, we can define its matrix elements by

Df‘n,m(R) = <j, m

which are sometimes called Wigner functions after E. P. Wigner, who made pioneering contributions to the group
theoretical properties of rotations in quantum mechanics. Notice here the same j-value appears in the ket and bra,
which means rotations cannot change the j-value. Often in the literature, the (25 + 1) x (25 + 1) matrix formed by
D’ , (R) is refereed to as (2j + 1)-dimensional irreducible representation of rotation operator D(R). This leads us
to the group theory which is beyond the scope of this course.

II. SPIN

In classical mechanics, a rigid object admits two kinds of angular momentum: orbital (L = r x p), associated with
the motion of the center of mass, and spin (S = Iw) associated with motion about the center of mass. For example,
the earth has orbital angular momentum attributable to its annual revolution around the sun, and spin angular
momentum coming from its daily rotation about the north-south axis. In the classical context this distinction is
largely a matter of convenience, for when you come right down to it, S is nothing but the sum total of the “orbital”
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angular momenta of all the rocks and dirt clouds that go to make up the earth, as they circle around the axis. But
an analogous thing happens in quantum mechanics, and here the distinction is absolutely fundamental. In addition
to orbital angular momentum associated with the motion of the electron around the nucleus, the electron also carries
another form of angular momentum, which has nothing to do with motion in space (and which is not, therefore,
described by any function of the position variables r, 6, ¢) but which is somewhat analogous to classical spin (and for
which, therefore, we use the same word). But we can not press this analogy too far: The electron (as far as we know)
is a structureless point particle, and its spin angular momentum cannot be decomposed into orbital angular momenta
of constituent parts. Suffice it to say that elementary particles carry intrinsic angular momentum (S) in addition to
their “extrinsic” angular momentum (L).

A. The Uhlenbeck and Goudsmit proposal

In 1925, Uhlenbeck and Goudsmit postulated the existence of a new intrinsic property of particles that behaved
like an angular momentum as a means of explaining the results of fine structure of spectral lines, anomalous Zeeman
effect and Stern-Gerlach experiment. In these experiments one always observe even number spectral lines, Zeeman
sub-levels or electron beams. This can not be explained by orbital angular momentum because the quantum number
[ is integer and (2] 4+ 1) must be odd. This intrinsic property was later termed spin by Pauli, however, the image of
a spinning sphere is not likely an accurate one. This new property needs to be viewed as an intrinsic property like
mass and charge that is particular to a given type of particle. Note that, unlike mass and charge, there is no classical
analog to spin!

It was Dirac who later showed that spin arises very naturally in a correct relativistic formulation of the quantum
theory. This formulation is embodied in the relativistic generalization of the Schrodinger equation called the Dirac
equation.

According to the Uhlenbeck and Goudsmit proposal, the spin of a particle should behave like an angular momentum
and, therefore, should have an associated magnetic moment

JUB &
M, =-==S
h

where 8§ is the spin angular momentum operator, the projection of which on any axis can only take two possible values

S, =+-h

1
2
g is a constant introduced to produce the best fit with experiment and pup = eh/2m is the Bohr magneton . The
interaction with a magnetic field is proportional to —IM; - B, which is the basis of the NMR technique. It is found
that good fits to experimental data are obtained when g = 2, which means that the spin gyromagnetic ratio, defined
to be gup/h is twice as large as the orbital gyromagnetic ratio pg/h.

B. Description of spin state and spin operators

Two principles should be kept in mind in describing the spin wavefunction and spin operator. First, spin is an
intrinsic property of electron. It is not the result of some kind of spatial motion, therefore, it can not be expressed
by a wavefunction of spatial coordinate and can not be expressed by operators composed by # and p. Secondly,
spin is a kind of angular momentum, and obeys all the requirements for an angular momentum. The spin operators
representing spin angular momentum has three components Sy, Sy, S.. They obey the general commutation relations
of any angular momentum, i.e.

>
>
>

+Sy — 8,8, = ihS,
§.8. — 6.8, — ihd,
AzAa,_ AIAz:ihAy

One may formally write it in a compact notation



which means

The square of each component

leads to

So the spin quantum number takes the value of S = %
1

In general theory of angular momentum, we have discussed the j = 3

11

case which is suitable to express the spin

angular momentum. Actually this is the spin of the particles that make up ordinary matter (protons, neutrons, and
electrons), as well as all quarks and all leptons. Moreover, once you understand spin 1/2, it is a simple matter to

work out the formalism for any higher spin. There are just two eigenstates of J? and J.: Xy = |%7 %>, which we call

spin up (1) and X-1= |%, —%>, which we call spin down ({). This is a complete set of eigenstates of one electron spin

and can be used as basis to span a representation - the spin representation. Using these as basis vectors, the general
state of a spin-1/2 particle can be expressed as a two-element column matrix (or spinor)

a
x=<b)=ax;+bx;

1
X3=\ o) X%

Meanwhile, the spin operators become 2 x 2 matrices

A hio1 A h(0 —i A

with

Il
7~ N
— O
N—

A 3p2 A 0 h A
2 _ 1 _ _
#=(% ) 8=(0s) -

respectively. The ladder operators are defined as before S, =5, + ZS'y

C. Pauli matrices

It is customary to write S = 267 where 6 = (6,,6y,6.) are the famous Pauli spin matrices

. 01 (0 —i .
#=\10) 7 \io) 77

Pauli spin operators satisfy several important relations. First it is easy to show that

5-]2:13 j:xayaz

&jé’k+&k&j:0, fOI‘j?ék
These two relations are equivalent to the anti-commutation relation

{6,601} =20k

(

10
0 -1

).

(13)

(14)
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We also have the commutation relations
[6),0k) = 2i€;1101 (15)
Combining (14) and (15) we can obtain
G0y =102, (16)
Gyb, = 104,
G0, = 10y.

Thus we see that, owing to 632» = 1 (originated from the fact that S, = :l:g), the spin operators satisfy more rules
than other angular momentum operators. Notice also that

5t =05, det (6;) = —1, Tr(5;) =0

It is possible to establish the Pauli matrices anew from the operation rules. Obviously the operator 6, is diagonal
in its own representation and is expressed as
. (10
7=\ 0 -1

So what matrix forms will 6, and &, be? Suppose 6, can be expressed by
. [ ab
because it is hermitian. From 6,6, + 6,6, =0
a b 1 0 1 0 a b
(b* c> <0 —1)+(0 —1> <b* c) =0

one has

By means of 62 =1

(6) (56
o (V1)

bb* 0 .
< 0 bb*>—1:>bb =1.

Choosing b = b* = 1, we have

Finally using 6,6, = i6,, we obtain

D. The complete wave function of an electron
For an electron with a spatial wave function ¢ (z,y, z) and a spin ”up”, the complete wave function is
T,Y, 2

For an electron with a spatial wave function ¢ (z,y, z) and a spin "down”, the complete expression of wave function

1S
0
V2 =¢(,y,2) Xy = (qs(x,y,z) )
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The superposition of the two above wave functions is

U =aly + bW, = ( ‘gg;((;”;/j)) ) .

Example 1 Measurement of spin: The eigenstates of S. are of course

a-(0) ()

with eigenvalues +h/2 and —h/2, respectively. If you measure S. on a particle in the general state

a
X = (b) =axy1 +bx_1,

you could get +h/2, with probability |a|2, or —h/2, with probability |b|2. Since these are the only possibilities, |a\2 +
|b|2 =1, i.e. the spinor must be normalized. But what if, instead, you chose to measure S, ? What are the possible
results, and what are their respective probabilities? According to the generalized statistical interpretation, we need to
know the eigenvalues and eigenspinors of Sy,. The characteristic equation is

~\ h/2
h/2 —A

‘:0:)\2:(h/2)2:>)\:ih/2

Not surprisingly, the possible values for S, are the same as those for S.. The eigenspinors are obtained in the usual

L(20)(3) -+ (3)+ (2)-+(3)

so = ta. Evidently the (normalized) eigenspinors of S, are
> h
X(z) = ( \{i ) , with eigenvalue + 3

V2
V2

As the eigenvectors of a Hermitian matriz, they span the space; the generic spinor x can be expressed as a linear

combination of them:
a at+b (4 a—0b (4

If you measure Sy, the probability of getting +h/2 is |a + b|* /2 and the probability of getting —h/2 is |a — b|2 /2. It
is easy to check that these probabilities add up to 1. Suppose a spin 1/2 particle is in the state

_ 1 ( 1+ )
X /6 2
If you measure S, the probability of getting +h/2 is |(1 +1) /\/6‘2 = 1/3, and the probability of getting —h/2 is

|2/\/6’2 = 2/3. If you measure S, the probability of getting +h/2 is |(3+1) /\/€|2 /2 =5/6, and the probability of
getting —h/2 is |(—1 + 1) /\/6|2 /2 = 1/6. Evidently the expectation value of S, is

S L(_h\_h
6\ 2 6\ 2/ 3

which we could also have obtained more directly:

1
X i = ( V2 ) , with eigenvalue — 3
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Problem 2 Zeng Jinyan, Textbook, p238-239, 1,2,5,4

Problem 3 Show that the Pauli spin matrices satisfy

6j5’k = 5jk +i E Ejkla'l
l

III. ADDITION OF OF ANGULAR MOMENTA

It often happens that there are more than one angular momenta in one system. There may be two possibilities:
On the one hand, system contains two particles, each has its own angular momentum. On the other hand, particle
may possess more than one angular momenta, for example orbital angular momentum and spin angular momentum.

One essential question is: How these angular momenta behave themselves in a system?

These angular momenta keep their independency. Each angular momentum has its own eigenvalues (j 2, jz) and

its own eigenstates (|j,m)). The angular momenta do not interfere each other. In this case, these angular momenta
are uncoupled.

But there do exist interactions, slight or strong, between (among) these angular momenta. Individual angular
momentum thus loses its independency. They add together to form a total angular momentum. In this case, these
angular momenta are coupled.

We are interested in the relation between the uncoupled angular momenta and coupled angular momenta. Given
two angular momenta, what would the resulted total angular momentum be? From the viewpoint of representation,
how would a unitary transformation change the states from uncoupled representation to coupled representation?

A. Complete set of commutation operators in two representations

Consider two angular-momentum operators J; and Js in different subspaces. The components of J; and J, satisfy
the usual angular momentum commutation relations

[jlj, jlk:| = ihejpdu
[ij, ij} = ihejpJa
However, we have
{jlk»jﬂ} =0

between any pair of operators from different subspaces. The infinitesimal rotation operator that affects both subspace
1 and subspace 2 is written as

ijl-né(b ijQ-néqﬁ i(J1®1+1®J2)-n6¢
1R g (00 -

We denote the total angular momentum by
J=Ji9o1+10J,
which is more commonly written as
J=3,+73,
As for the choice of the base kets, we have two options
e Uncoupled representation: Common eigenstates of commutative operators j127 Jiz, j22 , Ja. denoted by
71, J2; M1, ma) = |1, M) |2, ma)

For given J; , J,, the (2j1 + 1) (2j2 + 1) independent basis eigenstates |j1,m1) |j2, ma) constitute the uncoupled
representation in (271 + 1) (2j2 + 1) dimensional spaces.
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e Coupled representation: Common eigenstates of commutative operators j12, j22, J 2, J. denoted by
|j17j2;j7m> or ‘.77 m> .

It is necessary to show that these operators commute each other. From the definition of the total angular
momentum, one obviously has

jac = j1x+j2x
Ay = jly"'j?y
Az = jlz + j2z

By writing J? as

7= (T 32)2 = 2t B2 (Gradua + iy + Jih. )
we readily see
[j% jﬂ ~0
Moreover, it is very important to note that even though
2, 12| = =2ifdiy s + 2if 1Ty
[ﬁ, J}Z} = 2ihiyyJay — 2ilidyaJa,
we have
{jz, J;} —0
that is why we can choose J. in our complete set of commutative operators in coupled representation, but not

le and ng Likewise, we can not add J J2 to the set of uncoupled representation.

B. Transformation between coupled state and uncoupled state
We now consider the unitary transformation that connects the two representations

Gom) = > g1, dasma, ma) (ju, ja; ma, malj, m)

ma,ma

The elements of this transformation matrix (j1, j2; m1,m2|j, m) are known as Clebsch-Gordan(CG) coefficients.
There are many important properties of CG coefficients. First, the coefficients vanish unless

m = mi -+ ms.
To prove this, first note that
(jz - jlz - j2z> |j,m> =0
Multiplying (j1, j2; m1, mo| on the left, we have
(m —my —ma2) (j1, jo; M1, mz|j,m) = 0
Second, the coefficients vanish unless

lj1 = Jo| <J < g1+ J2
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FIG. 2: Triangle rule for addition of angular momenta.

Indeed, given 71, j2 we have

mlmax:jh mZmax:j27
Mmax = jl +J2 = jmax = jl +J2
But what is jupi,? We could obtain it from the fact that the dimensionality of space should be invariant under the

transformation of representations. In the uncoupled representation, we have (2j; + 1) (2j2 + 1) independent basis
eigenstates while the dimensionality of the coupled representation is

Jmax

Z (27 +1) = 3 (271 +2j2 + 1) + (2min + 1)) (J1 + J2 = Jmin + 1)
J=Jmin

= (.71 +.72 +jmin + ]-) (]1 +,72 7jmin + 1)

= (21 +1)(2j2+1)
It follows that

451j2 + 251 + 252 + 1= (1 + G2+ 1)* = jlin
0= 37 + 3 — 2j1d2 — Jiin
2 = (1 — 52)°
i.e.
jmin = ‘Jl _j2|

so j takes values
J=g1+j2,01+Jj2— 1, |j1 — jal (17)

This property appears more clear from the vector model of angular momentum addition. In Figure 2 we visualize J
to be the vectorial sum of J; and J2. Equation (17) means that one side of a triangle is neither larger that the sum
of the other two sides, nor smaller that the subtract of them.

CG coeflicients are nothing but the unitary transformation matrix elements between two representations, uncoupled
and coupled. The third property of CG coefficients is that they form a unitary matrix and by Condon-Shortley
convention the matrix elements are taken to be real. An immediate consequence of this is that the inverse coefficient
is the same as itself

<j1aj2;m17m2|j7 m> = <j7m|j17j2;m17m2>
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A real unitary matrix is orthogonal, so we have the orthogonality condition

Z (41, 23 ma, malg, m) (i, j2; my, malg,m) =

jm

5m1m’1 5m2m/2

Z (41, 23 ma, malg, m) (i, s ma, malg’,m') = 855 Gmme

mim2

Different authors used different notations for this coefficients which we list in the table

Condon-Shortley
Edmonds
Rose

Wigner 3-j symbol

(J1jzmimsz|jm)
(J1izmimaz|j1jeim)
C (j1j2d, mimam)
J1 J2 J3
myi1 Mm2 M3

Related to Condon-Shortley through

(

Wigner’s 3-j symbol is a more symmetric representation

J1 o J2 3
mi1 ™o M3

JioJz gz ) _ [ J2
mi1 Mo M3 mo
| i

mao

J1

g

—mp —m2 —Mm3

i e 1, .
) = (=17 (245 + 1) 2 (jijomamal|js, —ms) ,

J3og1 y_ [ J3 1 J2
ms My m3 myi Mg
J1 Js (_1)(j1+j2+j3)
mi ms

Jo Js ) (_1)(j1+j2+j3)

Example 4 We show by an example how to calculate the CG coefficients. Let J1 be an orbital angular momentum

with quantum number | = 2 and Js be a spin angular momentum with quantum number s = 3.

uncoupled representation are

L The eigenstates of

|j1am1> : YQQ;}/ZlaYQOvYQ,fla}/’Q,fQ
i > 11 1 1
mo) : ==, = _ ==, —=
J2, M2 X+ 27 ) ) 23 9
Obviously one has
LA
Mmax = 55 Jmax = 5
9/ 2
The state in coupled representation is
55
25\ v 18
9’ 2> 22X+ (18)

from which we apply the operator J_ to derive other states with the same Jmax- Note that

j,:j1,+j2,:f4,+ S,

For each side of equation (18), by means of

J_ljm)y=/(G+m)(G—m+1Dhljm—1),
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m2
m=m 1+m2=5/2
Y2 —2X+ Y2,—1X+ YZOX+ N Y21X+ \ Y22X+
X % ) % ¥
\
\ \ \ \ N
\ . \ . \ N N N \
\ \ \ \
\ \ \ \
m
\ \ \ \ 1
\ \ \ \
A \ \ \ \
A \ \ \ \

A \ \ \ \

¥ ~ * ¥

2,—2X 2 lX YZOX Y21X Y22X—
m=-5/2 m=-3/2 m=-1/2 m=1/2 m=m, +m,=3/2

FIG. 3: Example for calculating the CG coefficients.

and

L Yy = /(4 mp) (= my+ 1)hY 1
S_xy =hx—,8_x-=0

. |55 5 3
12,2 = VER |2, 2
33)vmf33)

(L-+ 5-) Yaoxs = 2W¥ars + W¥aax-

5 3 1 1
22N 2y 2 Voy 1
’2’2> \[521X++\[522X (19)

Applying the lowering operator once more we get

5 ‘5 3> (L + S (\/73’21x++\[Y22x>

we obtain

This leads to immediately

and
‘; ;> \/7Y20X++\/7Y21X—
; ;>=\/7Y21X++\/7Y20X
; ;> \/>Y2 2X++\/>Y2—1X—
;7—2> =Y _ox-

The relation of these states can be understood from Figure 3. We also see there are two uncoupled states Ya1x+,

Yoox_ associated with m = my + mo = % They can add up to give two independent orthogonal states. Of them, one

is the state (19), while the other one belongs to j = 3

3 3 1 4
’2> 2> = —\/;Yzwﬁ + \/?1/22)(



19

The other j = % states are

31 2 3

S S A 2 Y
‘2’2> \ﬁ 2°X++\/; 21X
31 3 2

S 2N 2y, S Yoox
’2’ 2 \/;2’ 1’“Jr\/gm
3 3 1 1
22Ny, 2V, v
’2’ 2> \/;2’ 2X“L\[a?’ 1X

These 10 states (6 of them belong to j = g and 4 of them belongs to j = %) are all possible ones in the coupled

representation because j can only take values

1 5
(1 +j2) + 575
and
1 3
(J1 — Jo) B B
In summary, in the uncoupled representation we have (2j1 + 1) (2j2 + 1) = 5 x 2 = 10 base states, while the dimen-

stonality in coupled representation is the same

D | Ot

) . ) ) ) . 3
ja=(J1+7j2) = 3, ]B:(h*h):i
N = (2ja+1) + (25 +1) = 10

If, on the other hand, our system is composed by two angular momentum j1 = 4 and jo = 1, it can be seen that the
dimensionality remains the same after the unitary transformation. There are three sets in this case with ja,p,c = 5,4,3
and the number of bases in uncoupled representation is

(271 +1) (2j2+1) =9 x 3 =27
while that for coupled one is
(2ja+ 1)+ 2jp+ 1)+ 2jc+1)=11+9+7=27
Problem 5 Zeng Jinyan, Textbook, p239-240, 7

IV. FINE STRUCTURE OF ALKALI SPECTRA

In our study of the hydrogen atom, we took the Hamiltonian to be
o, €1

2m B dmeg T

(electron kinetic energy plus Columbic potential energy). But this is not quite the whole story. We have already
learned how to correct for the motion of the nucleus: Just replace m by the reduced mass. More significant is the
so-called fine structure, which is actually due to two distinct mechanisms: a relativistic correction, and spin-orbit
coupling. Compared to the Bohr energies, fine structure is a tiny perturbation - smaller by a factor of o, where

1 e? 1
o= — o~
4dmeg he  137.036
is the famous fine structure constant. Smaller still (by another factor of «) is the Lamb shift, associated with the
quantization of the Coulomb field, and smaller by yet another order of magnitude is the hyperfine structure, which

is due to the magnetic interaction between the dipole moments of the electron and the proton. This hierarchy is
summarized in the following table.

Bohr energies: |of order a?mc?

4 2

Fine structure:|of order a*mc

Lamb shift:|of order a®mc?

Hyperfine splitting: |of order (m/m,)a*mc?
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FIG. 4: Hydrogen atom, from the electron’s perspective.

A. Spin-orbit coupling

We study the atomic levels of hydrogen-like atoms, that is, atoms with one valence electron outside the closed shell.
Alkali atoms such as sodium (Na) and potassium (K) belong to this category. The central potential V' (r) appropriate
for the valence electron is no longer of the pure Coulomb form. This is because the electrostatic potential ¢(r) that
appears in V(r) = e¢(r), is no longer due just to the nucleus of electric charge |e| Z; we must take into account the
cloud of negatively charged electrons in the inner shells. The degeneracy characteristic of the pure Coulomb potential
are now removed in such a way that the higher [ states lie higher for a given n.

Now consider a classical model of spin—orbit coupling as electron moves by a closed orbit around nucleus. The
nucleus may also be viewed circulating around electron by a reverse orbit. The circulating nucleus generates a
magnetic field B at its center, which exerts a torque on the spinning electron, tending to align its magnetic moment
along the direction of the field. If we picture the nucleus from the electron’s perspective as a continuous current loop
(Figure 4), its magnetic field can be calculated from the Biot-Savart law

Ho 2l
B=——
A7 r

with an effective current

[= 2
2rr

The magnetic field is

1 Zev
ey 2r?

where we have used ppgg = 1/c2. In order to show the direction of magnetic field, the magnetic field has been written
in the vectorial form

1 Ze /r
B= 45 (Sxv)
dmeg c2r2 \r
in which r x v is composed of the orbit radius and velocity of nucleus, but apart from the mass of the electron, it is
exactly the same as the orbital angular momentum of the electron L = r X p. So

1
B-_L _Z¢q, (20)

4dmeg me2r3
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The interaction energy of magnetic field and electron spin magnetic moment is
N JUB A 1 Ze =

_M.-B=— (7 S) . i

° R <47r50 me2r3 >

e 1 Ze - 1 Ze? /. .

_ _fs). I i IO L <L~S)
( m <47T€0 me?r3 ) dmeg m2c2r3
1 1d 1 Ze? 5 1 1dV /o 4
S -z L.s)zifi(L.S>
m2c2 r dr ( drweg T > ( m2c2 r dr

But there is a serious fraud in this calculation: I did the analysis in the rest frame of the electron, but that’s not an
inertial system — it accelerates as the electron orbits around the nucleus. You can get away with this if you make an

appropriate kinematic correction, known as the Thomas precession (after L. H. Thomas). In this context it throws
in a factor of 1/2

&
I

A 1 1dV. - A oA
= sy gt S=¢0)L-8

This is the spin-orbit interaction; apart from two corrections (the modified gyromagnetic ratio for the electron and
the Thomas precession factor — which, coincidentally, exactly cancel one another), it is just what you would expect
on the basis of a naive classical model. Physically, it is attributable to the torque exerted on the magnetic dipole
moment of the spinning electron, by the magnetic field of the proton, in the electron’s instantaneous rest frame. The
correct quantum-mechanical explanation of this must await the Dirac’s relativistic theory of the electron.

B. Perturbation calculation of spin-orbit coupling energy

The Hamiltonian of the external electron of alkali atom is FIO

~ 1
Hoz%pQ—FV(r)

The eigenfunctions and eigenvalues satisfying the Schrodinger equation
Hop(©) = E(0)4(0)

have following features

0
YO = ¢, = RuYim,

nlm;

0
E© = E’r(Ll)

Note that the eigenvalues differ from hydrogen atom case in that they also depend on angular quantum number [.
We treat the spin orbit coupling as perturbation

H =¢(r)L-8
This arises the following questions:

e In considering the zeroth—order wave function, spin freedom of degree must be included.

e The zeroth—order state is degenerate
ET(L(Z)) Ryi (1) Yim, (6, 9) (21 + 1) —fold degenerate

When spin is included, the degeneracy becomes 2 (2] + 1) fold. Thus we are dealing with a degenerate pertur-
bation problem.

e Which of the two representations (uncoupled or coupled) shall we choose as the basis for perturbation? The
wavefunctions in uncoupled representation are R,;Yjy,, x+ with m; = [,I —1,---, =l and x = x+,x—. In the
presence of spin-orbit coupling, the Hamiltonian no longer commutes with L and é,A so the spin and orbital
angular momenta are not separately conserved. However, H' does commute with L2, S2, and the total angular
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momentum J =L +S. Hence these quantities are conserved. To put it another way, the eigenstates of L, and
S, are not “good” states to use in perturbation theory, but the eigenstates of L2, 52, J? and J, are. That
means we need to treat the perturbation in the coupled representation. The quantum number for total angular
momentum takes values j =1+ %

1
=it g (2n+1)=2+2

1
]221—5(2j2+1):2l

with 2 (20 + 1) degeneracy. The zeroth order wavefunctions for [ = 2,s = % has already been calculated in the
5
2

5 3 4 1
2> = \/;Y21X+ + \/;Y22Xa ete

Now we have to include the radial wavefunction as well

. 5 3 4 1
In,l; j,my;) = |n,2; ok 2> = Ry2 (1) \/;Y21X+ + Ry (1) \/;YﬂX—
_ 4 RppYa " 1 0
5 0 5\ Rn2Yao

4

s Rp2Yo 53

— \/% = Rps (1) ’2,2>
Ve

3 3 1 4

— =)= —1/=Y5 =Yoo x_
'2,2> \/;21X++\/; 22X
33
2’2

previous section, for example for j; =

Similarly for j = %

and

3 3
5, 2> = Ryo (T)

|77/,l;j, mj> = na2;

C. The perturbation energy

Choosing |n,l; j,m;) = Ry (7) |j, m;) as the basis we may readily calculate the energy shift due to the perturbation.
Now

SO

In degenerate perturbation theory, if the perturbation is already diagonal in the representation we are using, all we
need to do for the first-order energy shift is to take the expectation value

<H> - /OOO RY, (Gymy | €(r) (1: : s) Ry |j, my) r2dr

:/ Rnl ( ) anQd’l" <jamj| (]:S) |j7mj>
0
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3p32
Doublet or “Fine”
structure /
3p1)2
A=5890A° A=5896A°

381/2

FIG. 5: Schematic diagram of 3s and 3p and sodium D lines.

where the integral
/ R} E(r)Ryridr = ¢
0

is the same for all elements. And the matrix elements for L - S are

2

ol (E-8) limg) = T (G + 1)~ 10+1) ~ 3/2)

We conclude that the energy shifts due to spin-orbit interaction are

AL — cgﬁ((ué) (I+23)—1(1+1)—3) =y for all j = [+ L states
D=L+ ) —1+1)=3) =L (1 41) for all j =1 — 3 states

Fine structure breaks the degeneracy in ! (that is, for a given n, the different allowed values of I do not all carry
the same energy); the energies are determined by n and j. Specifically, consider a sodium atom with ground state
configuration 1522s22p®3s!. We are interested in the excitation of the valence electron from 3s to the nearest level 3p.
Because the central potential is no longer of the pure Coulomb form, 3s and 3p are now split. The spin-orbit coupling
splits the 3p level further into two: 3ps/, and 3p; /o where the subscript stands for j = [ & 1/2. Experimentally, we

observe two closely separated yellow lines - known as the sodium D lines - one at 5890/1, the other at 58964 (Figure
5). Here the degeneracy is only partially removed, i.e., the degeneracy for 3ps,, and 3p;/, are 2 x 3/2 +1 = 4 and
2 x 1/24 1 = 2, respectively.

V. CHARGED PARTICLE IN ELECTROMAGNETIC FIELD - ZEEMAN EFFECT
A. Hamiltonian

Till now, the interaction we have discussed depends only on the position of the particle and is given by a scalar
potential. A quasi-static electromagnetic field described by an electrostatic potential ¢ and a vectorial potential A

B=VxA
0A . 10A
E= T V¢  (Gaussian, E = T Vo)

interacts with the charged particle with Hamiltonian (equation 55.4 in Classical Mechanics, 2nd edition, by Corben
and Stehle)

_ 1 2
H—%(pqu) + q9.
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In quantum mechanics, we replace the canonical momentum p by operator p = —ihvy, the potential ¢¢ by V and
obtain
- 1
H=_—(p—-qA)?*+V
5, (P —aA)” +
1
=—(P-qA) - (P—qgA)+V
5, (P —aA) - (D —qA)+
1 1 1 1
= B+ A%~ A P— - —qp- A+V.
2m 2m 2m 2m
—_———

It follows from

1 1 ih 1
—qp-A=—q(—ihV)-A = —— -A)+ —qA P
5, 4P 5, d(=ihV) 5y AV A)+ 5 —gA - D,
and the coulomb gauge
V-A=0
that
2 [ 4q N L ooa2
H=—p°"——A -p+V+ —¢“A”.
2m m 2m
If Gaussian System is used, the final result would be
5 Lo g,
H=—(p--A %
5, (P A+
1 2
= p2- LA prve L _az
2m mc 2mc?

B. Magnetic field

Let the magnetic field be along z-axis,
B = B()Z()

We choose vectorial potential to be of the form
1 1
Ax = —*Boy, Ay = *BQIE, Az =0.
2 2
and let ¢ = —e (electron).
1 e 1 1 e? B2
H=_—"—p>+V+ — | —=Boijps + =Boip — 0 (3% 4 P
om P T +m< g PoYPe 5 Oxpy>+2m rCER
1 e e e?B3 5,
= 5B+ Vb o Bo(ipy — gps) + 5 (@ +§7)

2m 8m

1 ., e - B2 5
=9 V + —ByL, .

2mp + +2m 0Lz + 8m (@ +77)

The third term in the above Hamiltonian
iiZBO:—(—iE) ‘B=—u-B
2m 2m
shows the interaction energy between “orbital magnetic moment” and external magnetic field, while the fourth term
2 2
68%(@2 + 92) reflects the confinement of magnetic field which corresponds the circular motion of charged particle
around magnetic field. It is easy to show that for magnetic field in the laboratory B < 10Tesla = 10°Gauss, the B2
term is much smaller than B term

2 2 2 2
¢ Do (32 4 42 N S2tad  eBy 5 1.6x 10719 % 10 x (0.53 x 10710)2

8m 8m

5= BoL. hp, T 4R 0T 4 x 1.055 x 10—

~1.0x107°

It is not surprising that we have the same result in Gaussian system

2 2
D443 eBy ,  48x 10710 x 10° x (0.53 x 1075)?

8mez 20

~1.0x107°

By~ 4he™® T T 4x3x 1010 x 1055 x 1027
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FIG. 6: Normal Zeeman effect of sodium D lines.

C. Zeeman effect

When an atom is placed in a uniform external magnetic field, the energy levels are shifted. This phenomenon
is known as the Zeeman effect. While the Zeeman effect in some atoms (e.g., hydrogen) showed the expected
equally-spaced triplet, in other atoms the magnetic field split the lines into four, six, or even more lines and some
triplets showed wider spacings than expected. These deviations were labeled the “anomalous Zeeman effect” and were
very puzzling to early researchers. The explanation of these different patterns of splitting gave additional insight into
the effects of electron spin. With the inclusion of electron spin in the total angular momentum, the other types of
multiplets formed part of a consistent picture. So what has been historically called the “anomalous” Zeeman effect is
really the normal Zeeman effect when electron spin is included.

For a single electron, we should include two more terms in the Hamiltonian: the interaction energy between spin
magnetic moment and the external magnetic field, and the spin-orbit coupling term. The total Hamiltonian is now

o A ) .
H=_—p>+V(r)+—L.Bo+—8.By+£(r)L - §
2m 2m m

= ffo+ﬁ3 —HT:ILS-

The nature of the Zeeman splitting depends critically on the strength of the external field in comparison with the
internal field (Equation 20) that gives rise to spin-orbit coupling. For if Be,: < Bin, then fine structure Hpg
dominates, and Hp can be treated as a small perturbation, whereas if B.,; > Bjn¢, then the Zeeman effect dominates,
and Hys becomes the perturbation. In the intermediate zone, where the two fields are comparable, we need the full
machinery of degenerate perturbation theory, and it is necessary to diagonalize the relevant portion of the Hamiltonian
by hand.

1. Normal Zeeman effect

For strong magnetic field case, external magnetic effect is larger than spin orbit coupling. In this case, the spherical
symmetry is completely broken by the strong external field that selects a particular direction in space, the z-axis.
We are left with cylindrical symmetry only - that is, invariance under rotation around the z-axis. The spin-orbit
interaction is decoupled and &(r)L - S can be omitted.

H=—p>+V(r)+-—L.By+ —S.B.
2m m

The good quantum numbers are now n, [, m;, ms, or in uncoupled representation, we choose ¥pim, X+ = Rni(7)Yim, X+,
which are nothing but the eigenfunctions of H with eigenenergy

eh
E, + %BO (my+2mg) = Ep + pupBo (my £ 1)
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For sodium D-line, the frequency shift is the famous Larmor frequency

Leh, cBy

Aw = =
w h2m 2m

We note that spin only shifts all energy levels up or down and does not contribute to the splitting (Figure 6). Therefore
in discussing the splitting of spectral lines in strong magnetic field, we usually ignore the spin effect. Moreover, though
there may be many split levels, the selection rules restricted the transition to three kinds. One spectral line thus splits
into three (an odd number) with frequencies

wo + Aw, wp, wg — Aw,

which is known as normal Zeeman effect. The spin-orbit coupling can be considered as first-order perturbation, the
energy correction of which is just the expectation value of Hpg on zeroth-order wavefunctions Ry (1) Yim, X+

2. Anomalous Zeeman effect

In the weak external field case, the spin-orbit couplingAfl Ls dominates the interaction energy. Spin and orbit
angular momenta couple first into a total angular moment J. It is the magnetic moment of J that interacts with the
external field.

A= 5?1V +emE-§+ (oLt £8) B
= — r r)L - — —S)-
2mp 2m m
We choose the coupled representation |n,[; j,m;) and calculate the additional energy due to perturbation of magnetic
field
(Lt+£g) .B:i(ﬂ+2§> B=-
m 2m

o (3+S)~B

m

Note that the degeneracy for j has been removed by spin-orbit coupling. For m;, owing to the term J.-B= jZBO,
different m; has different perturbation energy and the perturbation is now diagonal in |j,m;). We could therefore

calculate the additional energy by simply taking the expectation value of Hpg. Note that

<j+S)-B: <1+§’>3-B:<1+Jj'gs> J.By

and

so the additional energy
.\ . e [ A .
AE = (#s) = (1.g.m; |5 (+8) -BLjm;)
J2+82 1% .
= <l,j,m]' £ <1 + Jr,\) J. By l,j,mj>

2m 2J2
i(j 4+ 1)A% + 2h2 — (1 + 1)R%\ .
- <l,j,mj <1 O Uil Cht )JZBO

l7j7mj>

2m 2j(j + 1)h2
_ By, JG+)+2—1(1+1)
m(fm(l% 25 +1) )

Again we take the sodium D-line as an example. The spin-orbit coupling splits the 3p level into 3psz/o and 3p; /2
while the 3s level in unchanged. For 3ps/; level, i.e. j = 3/2,1 =1, we have
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FIG. 7: Anomalous Zeeman effect of sodium D lines.

while m; takes values of m; = %, %, —%, —%. The 3ps /2 level thus splits into four. For 3p, / level, ie., j =1/2,1 =1,
we have

with m; = %7 —% and the 3p; /o level splits into two. Finally, for 3s;/, level, we again have doublet

eBy L +§ eBy eBg
AE=—"TJ" (1422 ¢ ih=—=-2m;h=+—h
2m<+2>< x§>mf om om

[SIE NI

The spectral line from 3p to 3s splits into ten as shown in Figure 7, which is known as the anomalous Zeeman effect.

Problem 6 Zeng Jinyan, Textbook, p240, 9, 10a

VI. SPIN SINGLET AND TRIPLET

Suppose now that we have two electrons (neutral helium, for example. The theory here applies equally to two
spin-1/2 particles - for example electron and the proton in the ground state of hydrogen atom): each can have spin
up or spin down, so there are four possibilities in all for uncoupled state

X+ (Wx+2),  x+Mx-2), x-Ox+(2), x-O)x-(2)
or

LW

Question: What is the total angular momentum of the atom?
For one electron, we have the rules

SoX+ = §X=, SaX- = 5x+
Syx+ = i5x—, Syx- = —ifx+ (21)
Sax+ = Ex4r Saxo = —Ex-
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We could equivalently choose the uncoupled representation of commutative operators set (S’lz, ng) or the coupled
representation of operators set (52,5,) (We omit S7, 55 which are constants). Define the total spin operator

we have

Each of the four composite states is an eigenstate of S, =

S=S1+S2

N . N ~ 3h2 . A A A A
82 = 52+ 53+ 28185 = - +2 (51500 + 51,5y + 51.55.)

In matrix form, S, is diagonal

Si. 4+ Sy, — the z- components simply add
Saxy (1) xt (2) = Ay (1) x+ (2)
zx+ (1) x-(2) =0,
x (D x+(2) =0,
X- (1) x-(2) = —hx- (1) x-(2)
h0OO O
g = 000 O
000 O
000 —h

As for §2 we use (21) to obtain

2

2
S e ()= e 6 @ +2(5) - x- @

1o (2"‘) v (x (2)+2 (Z) e (x4 (2)

= 2h%x 1 (1) x+ (2)
A 3h?

S - @)= oo e @2 (3 ) e (5) v @

w2(F)em(-3)werz(5)wo(-5) e

= x4+ (1) x= (2) + 7x- (1) x+ (2)

o |

S W@ = 2o e @+2(5) e (5) @

w2(-F) o (F)erz(-5)ew(5)ee

= Wxs (1) x= (2) + B2 x- (1) x4+ (2)
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Thus in uncoupled representation the matrix of 52 contains non-diagonal elements

22 0 0 0
&2 0 R* K2 0
0 B2 R 0
0 0 0 2n2

the eigenvalues of which are 2h2,2h%,2h%,0. For eigenvalue 2h2, i.e., the total spin quantum number S = 1, the
corresponding eigenvectors satisfy

22 0 0 O 4 4
0 A2 K 0 Cy | _ o2 Co
0 2R 0 Cs Cs
0 0 0 2r? Cy Cy

where C7 and Cy may take any value and we have the restriction that Cy must be the same as C3. There are three
independent base kets

o O O =
= o O O
o shah o

which are by themselves normalized. For eigenvalue 0, i.e., the total spin quantum number S = 0, the corresponding
eigenvectors satisfy

22 0 0 O Ch
0 A2 K% 0 Ca | _y
0 K% A% 0 Cs
0 0 0 2r° Cy
in this case we have the eigenvector
0
1
V2

=S
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Thus we have got four common eigenstates of $2,S,. They can be further classified according to eigenvalues of S,

1
S=1,Ms=1, g =x+ (D x+(2)
0
0
0
S = 1, Ms = —1, 0 = X- (1) X— (2)
1
0
s=15=0, & = 5 D (- @)+ - (1) x- (2)
0
0
1
S=0,Ms=0, | VI | =—=hu (Wx 2) - x- () xs (@)
S - \/ix+ X X X+
0

The three states with S = 1, Mg = 1,0, —1 are called spin-triplet states, while the state with S = 0, Mg = 0 is called
spin-singlet state.

We could, on the other hand, arrive at the same result by means of the addition of angular momenta developed in
this chapter. Starting from the highest weight state

X+ (x4 (2)=[S=1,M,=1) =1, 1)

we apply the lowering operator on both sides

S = (S + % ) v (Dxs (2)

and get
VI+1D) (1 =1+ 1DA[1,0) = hx— (1) x+ (2) + hxy (1) x- (2)
that is
1.0) = 5 [ (1 (2% s (1) - (2]
Do it again

1, -1) = x- (1) x-(2).

The other possible combination gives

0,0) = % e (D x— (2) = x— (1) xs ()]

This is illustrated in Figure 8. A
It is interesting to note that x4 (1) x— (2) and x_ (1) x4 (2) are not eigenstates of 5>

R xy (1) x— (2) + B*x— (1) x+ (2)
SPx— (1) x4 (2) = Bx— (1) x4 (2) + Bx+ (1) x— (2)
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FIG. 8: Spin singlet and triplet.

while suitable combinations of them are

A 1 1
S? |l —=x+ (D x—(2) £ —=x-(1 2
| e @ x- x @)
h? h?
= — Dx—(2)+x-(1 2)]+ — Dx-(2)+x=-(1 2
ﬂ[m ) x—(2) +x- (1) x+ (2)] \/ibu( ) x-(2) +x- (1) x+ (2)]
[ 2R [ (- @)+ - (D )]
0
corresponding to eigenvalues 272 and 0.
We conclude that the combination of two spin-1/2 particles can carry a total spin of 1 or 0, depending on whether

they occupy the triplet or the singlet configuration. The triplet states are eigenvectors of 52 with eigenvalue 272 and
the singlet is an eigenvector of S? with eigenvalue 0.

Problem 7 Zeng Jinyan, Textbook, p240, 8

VII. IDENTICAL PARTICLES

A. Bosons and Fermions

Suppose particle 1 is in the (one-particle) state v, (r), and particle 2 is in the state i (r). In that case the wave
function for a two-particle system 1 (r1,rs) is a simple product ¢ (r1,r2) = ¥, (r1) ¥ (r2). In classical mechanics
we can always tell the particles apart — the particles are distinguishable. Quantum mechanically, electrons and all
other particles are “utterly identical”, i.e. indistinguishable in principle. We simply construct wavefunctions which
are non-committal as to which particle is in which state. There are actually two ways to do it:

Y (r1,15) = Athy (1) Yy (r2) £ 9 (r1) P (r2)]
Thus the theory admits two kinds of identical particles:

e Bosons, for which we use the plus sign, photons and mesons are bosons with integer spin;

e Fermions, for which we use the minus sign, protons and electrons are fermions with half-integer spin.
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This connection between spin and “statistics” (as we shall see, bosons and fermions have quite different statistical
properties) can be proved in relativistic quantum mechanics; in the non-relativistic theory it must be taken as an
axiom.

There is a more general way to formulate the problem: Let v (¢1,g2) denotes the two-particle wavefunction where

¢; contains all the coordinates of particles, spatial and spin. Define the exchange operator P which interchanges the
two particles

Py (q1,92) = ¥ (g2, q1)

For identical particles, ¥ (¢1,¢g2) and 1 (ga, ¢1) are the same state, apart from a constant factor A

Py (q1,42) = ¥ (g2,q1) = M (g1, g2)

We do it once more
P2y (q1,q2) = P\ (q1,q2) = N (g1, @2)
and it follows that the eigenvalues of P are +1
N=1-A=xl1
i.e.
Va1, q2) = £ (g2, 1)

For the eigenvalue +1

Py (q1,92) = ¥ (q1,92)

or

¥ (q1,q2) =¥ (g2, 1)

This gives a symmetric wavefunction that is suitable to describe Bosons which follow the Bose-Einstein statistics
fBE(6) = ——

erT — 1

For the eigenvalue —1

P (q1,q2) = = (q1,q2)

or

Y (q1,q2) = = (g2, q1)

This gives an anti-symmetric wavefunction that is suitable to describe Fermions which follow the Fermi-Dirac statistics

1

o= w1

Meanwhile classical particles obey Boltzmann-Maxwell statistics

_£_

feMm (e) = e 7.

This kind of symmetrization requirement, in particular for Fermions, leads to the famous Pauli Exclusion Principle:
Two identical Fermions can not occupy the same state. For if ¢, = 13, then

1
V2

At ultra-low temperature (~ 1072 K), Fermions go to degeneracy as shown in Figure 9, where particles fill the energy
levels two by two (including spin), while Bosons go to Bose-Einstein Condensation, i.e. many bosons occupy the same

Y (q1,q2) = [Va (q1) Va (q2) = Va (q2) Ya (q1)] =0
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FIG. 9: Fermi degeneracy and Bose-Einstein condensation.

quantum state. The experimental observation for alkali atomic gases won Cornell, Wieman (87 Rb), Ketterle (**Na)
the 2001 Nobel Prize for Physics.

The normalized wavefunction for N-identical Particles takes the following form: For Fermions, the wavefunction is
anti-symmetric

$1(q1) o1(q2) - ¢1(an)
SRR [
N (1) ¢n(g2) -+ o~ (an)

which is nothing but the Slater determinant. Upon the exchange of two particles, the wavefunction changes its sign,
ie.

Furthermore, if ¢; = ¢;, we get ¢4 = 0, which is Pauli’s Principle for many particles. For Bosons, n; particles may
occupy ¢; state and

Zni:N
i

The normalized symmetric wavefunction takes the form

N
[

i:]i,! D p[or (@) 2 (g) - én (an)]

¢s(q1,q2--qn) =

where p stands for any permutation for particles in different states.

B. Symmetrization of wavefunctions

We give some examples on how to symmetrize the wavefunction. First we consider three identical particles of spin-0
Bosons in infinite-depth well. The ground state is simply multiplication of three ground state wavefunctions

( gsin %) < %sin %) <\/gsin %) =1 (z1) 1 (x2) Y1 (23)
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n=3
S

n=2
] —e—e—

n=1

FIG. 10: Symmetrization of wavefunction for three Bosons in infinite potential well.

which is itself symmetric. For the first excited state, one of the Bosons may occupy its first excited state, while the
other two still in their ground states (Figure 10)

S
V3

For arbitrary state the symmetric state is

U (1,2,3) = —= [¢1 (21) Y1 (22) Y2 (23) + P2 (21) Y1 (w2) 1 (23) + Y1 (21) P2 (22) Y1 (23)]

L | Um @0) Y (22) p (23) + Pm (21) Yp (22) i (23)
¥ (1,2,3) = N AR (21) ¥p (22) Ym (23) + Un (1) Ym (22) Py (23)
+¢p (371) ¢m ($2) wn (.’1,'3) + ¢p (371) '(pn (IQ) wnb ($3)

For two electrons, spin must be considered and we have the Pauli exclusion principle. First we assume no interaction
between these two spins. The complete wavefunction is composed of spatial part and spin part

1/’1% 7/}157 ¢2a7 ¢267 1/}3047 ¢3ﬂ7 T

with @ = x4 and 8 = x_. The ground state is a combination of electrons with spin up and spin down while keeping
them in their spatial ground state 11

W(1,2) = = [ () o (1) (22) 61(2) = 1 (1) B (1) 6 (o) 2 (2)]

L {91 (z1) a(1) a1 (21) B (1)

V2 | Y1 (z2) (2) 91 (22) B(2)

The first excited states, corresponding to one of the electrons is excited to higher level, are degenerate because the
two spins can align parallel

_ L (@) a(1) e (21) (1) _
YD =B g @) a (@) e @)a@) |

)

1
V2 | 1 (z2)

or anti-parallel

V2 | 1 (22) @ (2) 1o (22) B(2) V2 | 1 (22) B(2) 2 (2) r(2)

as illustrated in Figure 11. All of these wavefunction are antisymmetric because they describe Fermions.
Now we consider the spin-coupling of two-electrons. For single electron the complete wavefunction is

Y (r1,81) = ¢ (r1) x (S1)

N (1’2) — L (1 (xl) o (1) (%> (1‘1)5(1) L0 (1,2) 1 (8 (wl) B (1) 2 (331) «Q (1)
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FIG. 11: Symmetrization of wavefunction for two electrons in infinite potential well.

and we denote the two-electron wavefunction as
¥ (r1,81512,82) = 1 (r1,12) X (S1,S2)
Fermions require anti-symmetric complete wavefunctions, which could be realized by choosing;:

e spatial wavefunction antisymmetric

1
Ya (r1,12) = —={¥m (r1) ¥n (r2) — ¥ (r1) ¥ (r2)}
V2
and spin wavefunction symmetric - spin triplet state

t=a()a(2)
Xs =19 H=8(1)5(2)
L) = H B +81)a )
with eigenvalues of 82: 2h2, eigenvalues of S, : +h, 0, respectively.

e or spatial wavefunction symmetric

Ym (I‘l)wm (I‘2>7 m=n

'(/JS (r17r2) B { % {wm (I'l) wn (I'Q) + wn (rl) wm (1‘2)} » M 7& n

and spin wavefunction anti-symmetric - spin singlet

(N =31 =—la®)p2)-1)a2)]

1 1
“=% 7
with eigenvalues of §2: 0, eigenvalue of S, 0.
Assume that the interaction Hamiltonian between the two electron spins takes the form
H=-JS,-5,
The extension of this to crystal lattice, we may have the Heisenberg exchange model. Now

S=S1+S2

35
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and

o §2 &2 _ &2
§;:Sp="b0 1 "2
2
J > 0 means the interaction is ferromagnetic (spins prefer to align in the same direction and the eigenvalue of total
spin takes the largest one to minimize the energy, i.e., S? |[FM) = 1(1+1)h? |F'M)), while for J < 0 the interaction is
anti-ferromagnetic (spins like to align oppositely and minimization the energy requires the eigenvalue of total spin to
be as small as possible, i.e., S2|AFM) = 0). We have the energy correction due to spin-coupling for spin triplet state
£ & 2R2—2x3p2 B2 Jh?
1792 B 1 energy Ly 1

whereas for spin singlet state

. 0-2x3r* 3

S, -Sg=—""4

3
_Zh2 _ 2932
5 4h , energy Fg 4JFL .

Example 8 Parahelium and Orthohelium: We have calculated by the variational method the ground state energy of
helium atom, the simplest one after hydrogen. In that calculation we did not consider the spin of electrons. As an
example of two-electron system (Fermion), the complete wavefunction is antisymmetric. In particular, the ground
state would be

s (r1,r2) = Y100 (r1) Y100 (r2)

if we ignored the repulsive interaction between the two electrons. This is exactly the trial wavefunction what we have
used in the variational method. Because it is a symmetric function, the spin state has to be antisymmetric,

Xa= 7 [a(1)5(2) = B(1) a(2)]

so the ground state of helium should be a singlet configuration, with the spins oppositely aligned. The first-order energy
correction due to the Coulomb repulsion between the two electrons can be calculated by perturbation theory

57 ¢

L _ .
11 8 ag

The excited states of helium consist of one electron in the hydrogen-like ground state and the other in an excited state

P (r1,12) = Ypim (r1) Y100 (r2)

We can construct from this both symmetric and antisymmetric combinations, in the usual way

P (r1,1,) = [Vnim (r1) Y100 (T2) + Y100 (T1) Ynim (r2)]

1
V2
P (r1,1y) = % [Vnim (r1) 100 (T2) = Y100 (T1) Ynim (12)]

the former goes with the antisymmetric spin configuration (the singlet),
¥ (r1, 81512, 82) = ¢S (ry,r2) XA (S1,S2)

and they are called parahelium, while the latter requires a symmetric spin configuration (the triplet),
W (r1, 81512, S2) = ¥4 (r1,12) X° (S1,S2)

and they are known as orthohelium. The ground state is necessarily parahelium; the excited states come in both forms.
The first-order energy correction can be calculated for parahelium

<¢SXA\FI’|¢SXA> —K+J ES—qtet+K+J
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and for orthohelium
<1/JAXSIIT|¢AXS> =K-J, E'=e¢g+e+K-J
where K and J are direct and exchange integrals

e? /drldrzwnzm ()| [100 (r2)[?

K=
dreg |r; — 1o

62 /drldrg ,l/};kllm (rl) 1!]100 (rl) w:TOO (I‘Q) wnlm (r2) .

r1 — 1o

N 47‘(’80

There is no transitions between singlet and triplet states, thus there are two sets of independent spectra. We summarize
the result in the following table

Parahelium (S = 0) Orthohelium (S = 1)
Y100 (1) 100 (r2) XA Forbidden by Pauli exclusive principle
[nim (£1) Y100 (T2) + %100 (T1) Ynim (£2)] X2/ V2| [Wnim (£1) Y100 (£2) =100 (T1) Ynim (r2)] X°/V/2

VIII. SUMMARY OF PART VI

In this part we treated the angular momentum in a more systematic way, i.e. instead of defining it as r x p, we
introduce the angular momentum as the infinitesimal generator of 3D rotation transformation. This definition is more
general in the sense that the theory developed in this part applies equally to any angular momentum, orbital, spin or
the summation of them. The commutation relation can be written in a compact form

|:jjajk:| :ihejkljla j7kal:x7yaz

The Casmir operator J? commute each one of them, and that is why we choose the common eigenfunction set of J?
and J,. From the basic eigenequations

J2j,m) = j(j + 1)k? |j,m)
= mh|j,m)
=V —m)(j+m+1)h[j,m+1)

VG +m)(j —m+1h|j,m— 1)

I |7,
J_1j,

m)
J: |3, m)
m)
m)

where ji =J, + ijy, we can obtain the matrix form for these operators. For j = %, one has the three Pauli matrices

o= (&zva—gp&z)
N 01 R 0 —2 R 1 0
Ox = 5 Oy = . y 0, =
10 i 0 0 —1

which are related to the spin operator through
)
S=-6.
2
Spin is a special angular momentum. Besides the usual properties of general angular momentum, Pauli matrices

satisfy more rules due to &]2» = 1. For example,

6j(3’]€ = 6jk +i E Ejkla'l
l

We should also append the wavefunction a spin part ¢ (z,y, z) x4 1 with x4 1 eigenfunctions of S, and S2
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The angular momenta can couple to a total angular momentum, therefore we have uncoupled and coupled repre—
sentations. Uncoupled representation is composed of common elgenstates of commutative operators Jl , le, J2 , ng

denoted by |j1, j2; ™M1, m2), while in coupled representation we choose J1 , J2 , JZ7 J. as our complete set with eigenkets
|71, J2; 4, m) or |j,m). They are related by the so-called Clebsch-Gordan(CG) coefficients

dom) =Y |d1,dasma, ma) (1, jas ma, maj,m)

mi1,ma

We have given examples on how to calculate these coefficients and thus the transformation between the two rep-
resentations. There are basically two types of this kind of coupling, spin-orbital interaction and spin states of two
electrons.

e The spin-orbital coupling
o —e(mi-8

gives rise to the fine structure of alkali atoms where one energy level splits into two corresponding to j =1+1/2
respectively. Putting the atom under a uniform external magnetic field, the Hamiltonian is changed into

N 1 e - e ~
H=—"—"p — IL.By+ —S.B L
5P +V(r)+2m o+ -5 0 +&(r)

= ﬁo+ﬁ3 +I;TLS-

For strong magnetic field, we have the normal Zeeman effect where the spin-orbital coupling is treated as
perturbation and one spectral line splits into an odd number. In a weak field, however, we observed an even
number of spectral lines which is known as anomalous Zeeman effect.

e In describing the complete wavefunction of two identical electrons (Fermions, carrying half-integer spin), we need
consider the symmetrization requirement of the wavefunctions, i.e. if the spatial wavefunction is antisymmetric,
the spin part must be symmetric, which means the spin triplet state

M=a(1)a )
xs =4 H=B(1)5 )
% L+ 1) = % [a(1)B(2)+6(1)a(2)]

They are eigenvectors of S with eigenvalue 2A2 thus carry total spin 1. If the spatial wavefunction is symmetric,
the spin part must be antisymmetric, which means the spin singlet state

(N =31 =—[a®)p2)-81)a2)]

1 1
A= —= 7
= V2
It is an eigenvector of S? with eigenvalue 0 thus carries total spin 0. Both of them can be obtained as a result
of transformation of uncoupled and coupled representations.

The symmetrization requirement for Fermions gives us the Pauli Exclusion Principle, i.e. two identical Fermions
can not occupy the same state, while for Bosons one arrives at Bose-Einstein condensation where many particles are
condensed into one single state.
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We give a very brief introduction to quantum theory of scattering, and two techniques for calcu-
lating the scattering amplitude: partial wave analysis and the Born approximation.
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FIG. 1: The classical scattering problem, showing the impact parameter b and the scattering angle 6.

I. INTRODUCTION TO CLASSICAL SCATTERING THEORY

We take as an example the hard-sphere scattering in the classical collision problem. A particle incident on a target
will scatter into some direction. There are two critical parameters in this process: the impact parameter b and the
scattering angle 6. Assume for simplicity that the target is azimuthally symmetrical, so the trajectory remains in one
plane, and that the target is very heavy, so the recoil is negligible. The essential problem of classical scattering theory
is this: Given the impact parameter, calculate the scattering angle. Ordinarily, of course, the smaller the impact
parameter, the greater the scattering angle (Figure 1).

Suppose the target is a billiard ball, of radius R, and the incident particle is also a billiard ball, which bounces
off elastically (Figure 2). In terms of the angle a, the impact parameter is b = Rsina, and the scattering angle is
0 = 7w — 2a, so

thus

0— 2cos ™t (b/R), if b< R
=10, ith> R

More generally, particles incident within an infinitesimal patch of cross-sectional area do will scatter into a corre-
sponding infinitesimal solid angle dQ (Figure 3). The larger do is, the bigger d will be; the proportionality factor
o(0) = do/dSQ, is called the differential scattering cross-section

do = o(0)dS).
In terms of the impact parameter and the azimuthal angle ¢, do = bdbd¢ and df) = sin 8dfd¢, so
b

db
o(6) = sin 0 ’d@

(Since 0 is typically a decreasing function of b, the derivative is actually negative - hence the absolute value sign.) In
the case of hard-sphere scattering,

b _ R0
o~ 272
SO
_ Rcos(0/2) R _R?



FIG. 2: Elastic hard-sphere scattering.

do

FIG. 3: Particles incident in the area do scatter into the solid angle df).

This example is unusual in that the differential cross-section is actually independent of #. The total cross-section is
the integral of o(#) over all solid angles:

o= /a(@)dﬂ

roughly speaking, it is the total area of incident beam that is scattered by the target. For example, in the case of the
hard sphere,

R% [

T dQ = mR?

o
which is just what we would expect: It’s the cross-sectional area of the sphere; billiard balls incident within this area
will hit the target, and those farther out will miss it completely. But the virtue of the formalism developed here is
that it applies just as well to “soft” targets (such as the Coulomb field of a nucleus) that are not simply “hit or miss”.

Finally, suppose we have a beam of incident particles, with uniform intensity j; = number of incident particles per

unit area, per unit time. The number of particles entering area do (and hence scattering into solid angle d?), per
unit time, is dN = j;do = j;0(0)dS2, so

1dN
0=



This is often taken as the definition of the differential cross-section, because it makes reference only to quantities
easily measured in the laboratory: If the detector accepts particles scattering into a solid angle df), we simply count
the number recorded, per unit time, divide by df2, and normalize to the intensity of the incident beam.

Consider the problem of Rutherford scattering: An incident particle of charge ¢; and kinetic energy E scatters off
a heavy stationary particle of charge ¢go with potential

I qq 3
= 1
Vir) = dmeg T (1)

From the classical mechanics, we could derive the formula relating the impact parameter to the scattering angle
(equation 38.12 in Classical Mechanics by Corben and Stehle)

_ he 0
8meg 2

The differential scattering cross-section for this problem caused by an inverse square law force is

0) = q1q2 cot (0/2) qiq2 1
8reoE  sinf  8weoE 2sin” (/2)
1 q1q2 cos(0/2) qiq2 1

~ 2sin (0/2) cos (0/2) 8meo E sin (0/2) 8megE 2sin? (6/2)

_ ( q142 )2
16meo E sin? (0/2)

And it is easy to show that the total cross-section for Rutherford scattering is infinite

a1 \° sin 6d6
= i =2
o /0(9) sin fdfd¢ T <167T60E> / sin (6/2)

This integral does not converge, for near § = 0 (and again near 7) we have sinf ~ 6, sin (8/2) ~ /2, so the integral

goes like
q192 192 2
16 x 27 | ——— 073d0 = —8 x 21 6725
en <167T6()E> / % <167T€0E> o= o

II. QUANTUM MECHANICAL DESCRIPTION OF SCATTERING THEORY

In the quantum theory of scattering, we imagine an incident plane wave, ¥;(z) = e***, traveling in the z-direction,
which encounters a scattering potential, producing an outgoing spherical wave (Figure 4). That is, we will look for
solutions to the Schrédinger equation of the general form

) eik:r
Y (r,0) = e™** + £(0) , for large r (2)
r

(The spherical wave must carry a factor of 1/r, because this portion of |5 |2 must go like 1/72 to conserve probability.)
The wave number k is related to the energy of the incident particles in the usual way:

k=+/2mE/h?

(As before, T shall assume the target is azimuthally symmetrical; in the more general case the amplitude f of the
outgoing spherical wave could depend on ¢ as well as 6.)

The whole problem is to determine the scattering amplitude f(6); it tells you the probability of scattering in a given
direction 6, and hence is related to the differential cross-section. Indeed, the probability current density for incident
wave, with units of particles per unit area per unit time, is

j i wz w ¢ ¢z

Zﬁ ﬁk
= % [—’lk — Zk] m
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gz
FIG. 4: Scattering of waves; incoming plane wave generates outgoing spherical wave.

We assume the scattering process to be elastic, that is, the internal states of the particles are left unchanged. In the
central force field, the conservatives are angular momentum, but not the momentum. The probability current density
for scattered wave in radial direction is

N )
Js = % [wsmws vy ar"/}s:|

ih eikr o ; e—ikr
=5 [f(@) " é??“(f () . )—c.c}

B ih 9 eikr _ike—ikr e—ikr

- R [ (R - ) e
_ih o[ —ik

— o O 275

k| f(9)°
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m T

The number of particles scattered into solid angle df2, thus passing area r2dS, per unit time, is

hk
AN = jr2dQ = — | £(0)|* d

m

SO

1 dN
0)=——
a(0) a0
Evidently the differential cross-section (which is the quantity of interest to the experimentalist) is equal to the
absolute square of the scattering amplitude (which is obtained by solving the Schrédinger equation). In the following

we will study three techniques for calculating the scattering amplitude: method of transition probability, the Born
approximation and partial wave analysis.

=fO)

III. METHOD OF TRANSITION PROBABILITY

In Part V, as an application example of Fermi’s Golden Rule of the transition probability, we have obtained an

expression for the differential cross section
2
/// V(r/)ei(po—p)-r//hd?)r/

2
m
0(9790):m



FIG. 5: Two momenta in the Born approximation: po points in the incident direction, p in the scattered direction.

For elastic scattering, the momentum is conserved, i.e. the momentum magnitude of incident particle |pg| is the
same as that of scattered particle |p|. For a spherically symmetrical potential, V (r') = V(+’), the only change is the
direction of the momentum and o (0, ¢) = o (). Define

hq = po—p
and from Figure 5 we see that
hg = 2psin (6/2). (3)

Let the polar axis for the 1’ integral lie along q, so that (po—p) -t/ = hgr’ cos @', the perturbation matrix element can
be calculated as (note the different meanings of scattering angle 6§ and polar angle ¢’)

/// V(r/)eiq-r'ds I /// eiqr’ COSQIV(?"/)TQdT/ sinﬁ’d&’d(b’

T
. ’ ’
o5} iqr’ cos O

=27 // V(r' )2 dr' e <039 4 (— cos 0') = 27r/ V(r')r2dr! S -
0 —iqr
00 iqr’ _ —iqr’ 2 o]
= 27r/ V(r’)r’er’% = —W/ V(r")2isin (gr') r'dr’
0 Lgr q Jo
4 oo
== V(') sin (gr') r'dr’
qa Jo
and it follows that
4m? 2

(4)

o0
/ V(r')sin (qr") r'dr’
0

U():thg

Example 1 Yukawa Scattering: The Yukawa potential is a crude model for the binding force in an atomic nucleus.
It has the form




where 8 and « are constants. The integral in Equation (4) gives

> / N o g oo e_ar/ iqr’ iqr’ \ 1 g0
/0 V(r)sm(qr)rdr:/o Bw(eq —e v )rdr

_ ﬁ = (ef(a*iq)r' _ 6*(a+iq)r') dr’

20 Jo
_ ﬁ 1 _ Bq
2t \a—1iq¢ «+iq a? + ¢
and
4m2 62

o(0) = he (a2 + q2)2

The total cross-section can be shown to be (Griffiths, prob. 11.12)

4 2 1
o= /0(9) sin0d0de = ( Z;f) e

Example 2 Rutherford scattering: If we put in 8 = q1q2/4meo, a = 0, the Yukawa potential reduces to the Coulomb
potential (1), describing the electrical interaction of two point charges. Evidently the differential cross-section is

2 2
[ @qg2 2m - q192
7= (47T60 (ﬁQ)2> a <167T€0E sin® (9/2)> ?

where we have used equation (3) and

p=hk=vV2mE.
Equation (5) is precisely the Rutherford formula we have obtained in classical theory. It happens that for the Coulomb

potential, classical mechanics, the Born approximation, and quantum field theory all yield the same result.

IV. LIPPMAN-SCHWINGER EQUATION - GREEN’S FUNCTION

The general scattering wavefunctions

ezk:r

W (r,0) = ™ + (0)

r

satisfy the time-independent Schrédinger equation,

h2v2 Vv =F
“om Y+ V(r)y = Ey

with V(r) the scattering potential. This can be written more succinctly as the superficial form of the Helmholtz
equation

(V2 +42) = 25 Vo (6)

Note, however, that the “inhomogeneous” term on the right hand itself depends on . Suppose we could find a
function G(r) that solves the Helmholtz equation with a delta-function “source”

(V> + k) G(r,r') = 6(r — 1), (7)

it is easy to show that



is a special solution to the inhomogeneous equation (6). Indeed

2m

(V24K ) = (92 4%) B [ G eVt

2m 3 2m

=77 d°r's(r — )V = —

G(r,r’) is called the Green’s function for the Helmholtz equation. (In general, the Green’s function for a given
differential equation represents the “response” to a delta-function source.)

Our first task is to solve Equation (7) for G(r,r’). This is most easily accomplished by taking the Fourier trans-
form, which turns the differential equation into an algebraic equation. After some heavy analysis, including contour
integration we get

eik|r7r'|
G(r,r') =

Az —r/|

(See Zeng Jinyan, textbook, page 356, or Griffiths, page 411, for detail.) The general solution for equation (6) can be
expressed as

P(r) = 1o(r) + 2}_77;1 d3r'G(r, ")V (r')(r')

in which o (r) satisfy the homogeneous Helmholtz equation
(V2 + k%) go(r) = 0.
For the finite range potential, ¥(r) can be taken as the incident wavefunction
wi(r) — eikz — eip(yr/h

The scattering problem reduces to the following integral form of the Schrédinger equation

m 5 /eik:|r7r'| , ,
vl = ) = gz [ @ T V) Q
= i(r) + ()

which also bears the name of Lippman-Schwinger equation. At first glance it looks like an explicit solution to the
Schrodinger equation (for any potential) — which is too good to be true. Don’t be deceived: There’s a ) under the
integral sign on the right-hand side, so we can’t do the integral unless we already know the solution! Nevertheless, it
is possible to repeat the integral successively

m eik‘r—r'| m ik|r'—r”|
3./

/ ! //e 1 "
P(r) = 1ho(r) — 572 d’r v 1] V(r') {1/}0(1" ) — 972 &’r Wv(r JY(r )}

B m d3r/ eik‘rfr'|
2mh? |r — 1’|

= ¢o(r) V(x')o(r')

mo\2 eiklr—r'| eik|r’—r”‘
+(3) / / Pr V) G V() -

Here comes the Born Approzimation: Suppose the incoming plane wave is not substantially altered by the potential;
then it makes sense to only keep the first-order, i.e.

m 5 /eik|r7r'|

r) ~o(r) — — r'———V (r" ) (r’
’l/)( ) 1/’0( ) 2 h2 |I'—I‘/| ( )1/10( )
Here r is the coordinate where one observes the scattered particles, while r’ is in the range of the scattering center. In
this sense, the macroscopic coordinate r is much larger than the microscopic coordinate r’ (Figure 6), i.e. |r| > |r|
for all points that contribute to the above integral, so

/
2 2r-r
lr — /| :r2+r’2—2r-r’:r2<1— 5 )
,



FIG. 6: Macroscopic and microscopic coordinates.

and hence

r

r—r/|~r—--1
r

In the insensitive denominator we can afford to make the more radical approximation |r —r’| ~ r; in the sensitive
exponent we need to keep the next term. Moreover, we see that

i.e. the momentum of scattered particle. In the case of scattering, we want
wo(r) — eikz — eipo-r/h

representing an incident plane wave. For large r, then

ikr ,—ikZ.r’
 ikz T spf ¢ T ! !
Y(r) e 2mh? /d ' r Vol
ikr
s T

This is in the standard form (equation (2)), and we can read off the scattering amplitude

f(0) = — m dBrIefip-r'/hV v eipo-r'/h
2mh?
:72W7Li2 /d‘gr’V(r/)ei(pO’p)'r//h
™

In Born approximation, the differential cross-section is then
m2

2
3 : - 'I‘/ h
(o) (9) = — /d r"/(r/)e’t(Po p) /

which is exactly the same as what have obtained from the transition probability method. What we have discussed in
last subsection is actually in the first-order Born approximation.
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V. PARTIAL WAVE ANALYSIS

Partial wave analysis is a very powerful tool to handle scattering problem in central force field with finite scattering
range, especially for low energy. The basic idea is that here the angular momentum and its z-component (L2, L)
are conservatives because of the rotational invariance of the system. We recall that the Schrédinger equation for a
spherically symmetrical potential V (r) admits the separable solutions

Tﬁ(ﬁ 0, ¢)) = R(T)}/hn (07 (Z))
where Y}, is a spherical harmonic and u(r) = rR(r) satisfies the radial equation

7 du (l(l + 1)

_ =F
o drZ + V(r)) u u

2mr?

At very large r the potential goes to zero, and the centrifugal term is negligible, so
Pu amE
dr2 = k2

The general solution is

u(r) = Ce™*™ 4 De=i*r

the first term represents an outgoing spherical wave, and the second an incoming one — for the scattered wave, we
evidently want D = 0. At very large r, then,

as we already deduced (on qualitative grounds) in the beginning of this section (Equation 2).

A. [ partial wave

Let us now consider the incident particle described by a plane wave traveling along z-axis
QZ}' _ eikz
;=
which is the eigenstate of momentum and energy with eigenvalues
pr=py =0, p,=hk, E=RhrE/2m
The momentum p, however, is not a conservative because

[p, H] = [p, V()] # 0

We note the incident wavefunction ¢; is the eigenstate of L. with eigenvalue 0, but it is not the eigenstate of L2
Rather, it is a linear combination of eigenstates of L2

eth® = lzz*l(m + 1)y (kr) P (cos 6) (9)
=0

where j; is a spherical Bessel function, P' is a Legendre polynomial, and 6 is the angle between z and r, i.e., the
scattering angle. The expansion of a plane wave in terms of spherical waves is sometimes called Rayleigh’s formula.
It is nothing but the unique solution for the case that the scattering potential were identically zero. The expansion
of incident wave on the eigenstates of conservatives L? and L, is the key point of partial wave analysis. Let us write
the general scattering wavefunctions with the scattering potential in the form

e(r,0) = i' (2L + 1) A Ri(r) P! (cos 0)
=0

The reason why we can assume this kind of expansion lies in that:
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FIG. 7: Incoming and outgoing partial waves.

e The [ partial waves in the incident plane wave
it (21 + 1), (kr) P! (cos 0)

corresponding to eigenvalues [(I 4+ 1)h? and 0 of L? and ﬁz, are scattered separately because of the conservation
of angular momentum, i.,e. they won’t mix up during the scattering process.

e Moreover, the conservation of L, makes m also a good quantum number and our problem is irrelative of ¢ thus
m = 0 for all the scattered waves. This simplifies the expansion on spherical harmonics Y, to that on Legendre
polynomials P!(cos §), which is nothing but Yjo.

The remaining task is to find the detailed form of the radial wavefunction R;(r) and the corresponding coefficients

A;. Before doing this, let us consider the asymptotic behavior of these partial waves. The asymptotic forms of the
Bessel functions in the limit kr — oo are

1 1
Ji(kr) — p sin (kr - 217r>

T
The [ partial wave with angular momentum /(I + 1)A?
i1 : l L ! ; 1
1"(21 4+ 1)1 (kr)P'(cos 8) — . (20 + 1) P*(cos @) sin | kr — §l7r
r

= iil(w +1)P(cos 0) (ei(krf%lﬂ) - eﬂ'(kr*%lw))

2ikr
_ 2Ty —i(kr—3tm) _ 201 g i(kr—3im)
= 25t P'(cosf)e 2 S P'(cosf)e 2

becomes essentially summation of an incoming spherical wave and an outgoing spherical wave. Thus

eth* = Z (I partial wave)

1
_ Z incoming spherical partial wave with angular momentum I(I + 1)h?
n l +outgoing spherical partial wave with angular momentum [(I + 1)h?

The superposition and interference of those partial waves gives the incident plane wave e*** (Figure 7).

The physics of scattering is now clear. When the scattering potential is absent, we can analyze the plane wave as
the sum of a spherically outgoing wave behaving like e~**" /r and a spherically incoming wave behaving like e?*" /r
for each r. The presence of the scattering center changes only the coefficient of outgoing wave

20+ 1 .
l outgoing spherical partial wave — —sliilHPl(cos 9)62(’”’%“)
kr—oo 2kr
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Because of the conservation of angular momentum, the outgoing flux must equal the incoming flux for each partial
wave separately. In other words, the coefficient of e~ /r must be the same in magnitude as the coefficient of e?*" /r.
This means that

1] =1 (10)

for all [. The most that can happen is a change in the phase of the outgoing wave and the incoming wave is completely
unaffected. Equation (10) is known as the unitarity relation for the ! partial wave. Thus superposition of the [ partial
waves

20+1
+ JH1pl

2041 10
—_— P
2kr 3 '

i(kr—llﬂ)
sy (cosB)e 2

(COS o)e—i(kr—%lﬂ) _

gives

2041 J+1pl —i(kr—4ir) i(kr—Lir)
; 2or P*(cos0) (e 2 sie 2 )

which should be the same as equation (2). So

) ikr 2l 1 ) )
ezkz + f(e)e _ Z 2]:_ l+1Pl( cos 0) (efz(krfélﬂ') o Slel(kriélﬂ-))
r . T
ie.
ikr

2041 1 pl —i(kr—4ir) _ i(kr—3in) e
Zl: Sor P*(cos8) (e —e ) + f(9) "

= Z Lhat i+ 1Pl (cos B) (e”'(k’“*%l“) — Slei(k’”*%l”))
2kr

The incoming partial waves on left and right side cancel each other. Multiplication of a factor re~*" reduces the

above equation into

2041 51 _iy 20+1 j+1pl —igl
_ o P . sl - _ P g iglm
g i (cosB)e + f(0) g “on (cosB)sie

and we get the scattering amplitude

f(0) = Z 2l;]; L i1 P! (cos 9)@"'%r (1—s)

21
= Z + iP'(cos0) (1 — s;)

Evidently the angular distribution of the [ partial wave, P'(cos ) = Y10(0, ¢), will not change in the scattering process.
The indices of refraction and therefore the wavelengths are different for area V(r) = 0 and V(r) # 0 which gives rise
to the change in the phases of outgoing and incoming waves. The combination of them leads to the phase shift.

B. Phase shift

The general scattering wavefunctions

o0

it (21 + 1) A Ry (r) P (cos 0)
=0

is shown to have the form of

21+ll+1 . Zi(kr—1y i(kr—11
P 0 ( l( T 3 ﬂ') _ l( ' 3 ﬂ))
% ooy (cos®) (e sie
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We thus see that the only change in the wavefunction at a large distance as a result of scattering is to change the
phase of the outgoing wave. Calling this phase 20; (the factor of 2 here is for conventional), we can write

5 = e2id
with §; real. For the full scattering amplitude, we have
20+1 2i6
f(6) = zl: WP (cosB) (e** —1)
1 A
= Z (21 + 1) €' sin 6, P! (cos 6) (11)

l

This expression for f(f) rests on the twin principles of rotational invariance and probability conservation. The
differential cross section o(6) can be obtained by just taking the modulus squared of equation (11). To obtain the
total cross section we use the orthogonality of Legendre polynomials and obtain

o= / |£(0) dy = Zi; D (20 +1) (2 + 1) e e sin 6y sin oy
124

X / P(cos 8) P (cos 0) sin d6

2 s 2
= k% - (2l + 1) (21/ + ].) 6716’ 6151' sin 51 sin 51/ m(;ll/
4
— 177‘; (20 + 1) sin® 6,
1
The application of partial wave analysis relies on finding the phase shift §;, i.e., dg, 1,2, -+ -. This is valid for the

potential which can be taken to be zero beyond some boundary and for low energy of the incident particles. Notice
that for larger [, the angular momentum carried by the [ partial wave is larger, and the system will less be affected by
the central force field because it is farther away from the scattering center. We need only consider the low [ partial
waves. For very low energy, only s partial wave [ = 0 is taken into account, i.e. dg # 0,671 = 6o = --- = 0, we have
P%(cosf) =1 and

If, on the other hand, only p wave is considered, P*(cosf) = cos,d; # 0,69 = 63 = --- = 0, then

1
o) = EQ sin? §; cos® 0
_ix

o= 2 3sin? §;

Or, if we keep s and p waves and neglect higher partial waves, g # 0,61 # 0,00 =d3=---=0
1, . )
() = = |e“5° sin 8o + 3¢ sin §; cos 0|2

4
o= k—z (sin2 8o + 3sin® (51)
Clearly there is interference between different partial waves.

Finally we give an example on how to calculate the phase shift for s partial wave. The potential model is

—Vo, r<a
V(T):{ O,O r>a

We try to find the positive energy solution (E > 0) to the radial equation for [ = 0

2 d*u (1(z +1)h2

" 2m dr2 2mir?

+ V(r)) w=Bu
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which is quite different with the bound state solution in Part III. The equation reduces to

d*u 2m (E + Vp)

W:—Tu:—kﬁu, r<a
d? 2mE
d—;;:—r;uz—ﬁu, r>a
with solutions
u = Asin (k'r + ) , r<a

u = Bsin(kr + &), r>a

while the solution in r > a is the scattering wave and hence dg is the phase shift. At r = 0 the wavefunction
R(r) = u(r)/r should be finite, so d) = 0. At r = a the wavefunction and its derivative should be continuous

Asin (k'a) = Bsin(ka + do)
AK' cos (K'a) = Bk cos(ka + dg)

SO

1 1
= tank'a = z tan(ka + do)

The phase shift is found to be
-1 k /
dp = tan (k’ tan k a) — ka

For

we find
(50 = —ka.

Inserting this phase shift into the total cross section, we get the result for hard sphere scattering

4
o= k—z sin? 6y = 4ma?

which is four times larger than the classical result.

VI. SUMMARY ON PART VII

The main task in scattering problem is to calculate the differential cross section: It is defined as the ratio of the

number of particles scattered into unit solid angle per unit time % with the number of incident particles crossing

unit area per unit time j;
1 dN
o(0) = ]Tdiﬂ

The total cross-section is the integral of o(6) over all solid angles

o= /a(@)dﬂ

In quantum mechanics we look for solutions to the Schrodinger equation of the general form

ikr
Y (r,0) = % + f(0) € , for large r
r




15

The differential cross-section is equal to the absolute square of the scattering amplitude

We provided three methods to calculate this. The Lippman-Schwinger integral equation

m 5 /eik‘rfr'|

U0) = ilr) — 5 Vi),

v/
in the first order Born approximation, gives exactly the same result as we got through method of transition probability
4m? 2
o(f) = g

o0
/ V(r')sin (qr'") r'dr’
0
with
hq = 2psin (6/2)

The scattering of a Coulomb potential gives the famous Rutherford formula

o (0) = (1671’60;18?1212 (9/2)>2

The Born approximation is more powerful for high energy scattering, while partial wave analysis is often used to
calculate the low energy scattering, in which case we only need to take into account the low [ partial waves. There is a
change in the phase of the outgoing wave and the incoming wave is completely unaffected. The scattering amplitude
is a summation for all [ partial waves

f(6) = % Z (21 4 1) "t sin §; P! (cos 0)
1

and the total cross section

a:gZ(QHl)sin?él
l

One thus need to calculate the phase shift d;, i.e., dg, 1, d2, - - - for each partial wave. Usually for low energy scattering
we only consider the lowest partial waves, s or p waves. For the square spherical potential, we have

k
8o = tan~? (k’ tan k’a> —ka

while for hard sphere
50 = —ka
The quantum result for the total cross section is four times larger than the classical one

o = 4ma?.
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