2D and Quasi-2D Fermi Gases with Rashba Spin-Orbit Coupling

Wei Zhang
Renmin University of China
Jinhua, Zhejiang, 08/14
Outline

- Introduction
 - BCS-BEC crossover in 2D
 - 2D Fermi gas with Rashba SOC
- Two-body physics in 2D and Q2D
 - Scattering state
 - Bound state
- Many-body physics in Q2D
 - Effective 2D Hamiltonian
 - Q2D Fermi gas with Rashba SOC
- Summary
Outline

• Introduction
 • BCS-BEC crossover in 2D
 • 2D Fermi gas with Rashba SOC

• Two-body physics in 2D and Q2D
 • Scattering state
 • Bound state

• Many-body physics in Q2D
 • Effective 2D Hamiltonian
 • Q2D Fermi gas with Rashba SOC

• Summary
BCS-BEC crossover in 2D

- Zero T

Randeria, Duan, Shieh
PRB 41, 327 (1990)
BCS-BEC crossover in 2D

- Finite T

Botelho and Sa de Melo, PRL 96, 040404 (2006)
2D Fermi gas with Rashba SOC

- Without polarization

Chen, Gong, Zhang, PRA 85, 013601 (2012)
2D Fermi gas with Rashba SOC

- With polarization: Homogeneous case

Zhou, WZ, Yi
PRA 84, 063603 (2011)

Tewari et al.
NJP 13, 065004 (2011)
\[p_x + ip_y \quad (p_x - ip_y) \]
Yang and Wan
PRA 85, 023633 (2012)
2D Fermi gas with Rashba SOC

- In trap

Zhou, WZ, Yi
PRA 84, 063603 (2011)

\[E_b/E_F = 0.5, \; \alpha k_F/E_F = 0.6, \; h/E_F = 1.45, \; P = 0.662. \]
2D Fermi gas with Rashba SOC

- Finite-T

$h = 0$

$\alpha K_F = 1.0 \bar{E}_F$

He and Huang, PRL 108, 145302 (2012)
Outline

- Introduction
 - BCS-BEC crossover in 2D
 - 2D Fermi gas with Rashba SOC
- Two-body physics in 2D and Q2D
 - Scattering state
 - Bound state
- Many-body physics in Q2D
 - Effective 2D Hamiltonian
 - Q2D Fermi gas with Rashba SOC
- Summary
Two-body scattering state (2D)

\[H^{(2D)} = H_0^{(2D)} + V_{2D}(\rho), \]

\[\downarrow \langle \rho | \psi_c^{(0)} \rangle = \frac{e^{ik \cdot \rho}}{2^{3/2} \pi} |\alpha(q,k)\rangle_s - \frac{e^{-ik \cdot \rho}}{2^{3/2} \pi} |\bar{\alpha}(q,-k)\rangle_s. \]

\[\Downarrow \langle \rho | \psi_c^{(+)} \rangle \approx \downarrow \langle \rho | \psi_c^{(0)} \rangle + A(c)_{\Downarrow} \langle \rho | g(\varepsilon_c) |0\rangle_{\Downarrow} |0,0\rangle_s, \]

\[f^{(2D)}(c' \leftarrow c) = -2\pi^2 \langle \psi_{c'}^{(0)} |0\rangle_{\Downarrow} |00\rangle_s A(c). \]

\[A(c) = \frac{(2\pi)_S \langle 00 | \Downarrow \langle 0 | \psi_c^{(+)} \rangle}{i\pi/2 - C - \ln(d\sqrt{\varepsilon_c/2}) - (2\pi)\lambda(\varepsilon_c, q)}. \]
Two-body scattering state (2D)

\[A(c) = \frac{(2\pi)S\langle 00|\hat{\nabla}|0|\psi_c^{(+)}\rangle}{i\pi/2 - C - \ln \left(d\sqrt{\varepsilon_c/2}\right) - (2\pi)\lambda(\varepsilon_c, q)}. \]

- Scattering amplitude is q-dependent
- Qualitative change of behavior at low-energy limit

\[
\lim_{\varepsilon \to 0} f_0^{(2D)} \propto \frac{1}{\ln \varepsilon_c}.
\]

\[
\lim_{\varepsilon_c \to \varepsilon_{\text{thre}}(q)} f^{(2D)} \propto \sqrt{\varepsilon_c - \varepsilon_{\text{thre}}(q)}.
\]
Two-body scattering state (2D)

\[F \equiv \frac{f^{(2D)} (c' \leftarrow c)}{\langle \psi^{(0)}_{c'} | 0 \rangle_\perp \langle 0 | \psi^{(+)}_c \rangle} \]
Two-body scattering state (Q2D)

\[A_{\text{eff}}(c) = \frac{(2\pi)_S \langle 00 \parallel \langle 0 | \psi_c^{(+)} \rangle}{i\pi/2 - C - \ln \left\{ d_{\text{eff}}(\varepsilon_c, q) \sqrt{\varepsilon_c/2} \right\} - (2\pi) \lambda(\varepsilon_c, q)}. \]

\[\ln d_{\text{eff}}(\varepsilon_c, q) = -\sqrt{2\pi w} \left(\frac{\varepsilon_c}{2\omega} \right) - \ln \left(-\frac{i\sqrt{\varepsilon_c}}{2} \right) \]

\[-C - \frac{\pi l_0}{a} + (2\pi)^2 l_0 \sum_{n_z=1}^{\infty} |\varphi_{n_z}(0)|^2 \lambda(\varepsilon_c - n_z \omega; q). \]
Two-body scattering state (Q2D)

Zhang, Zhang, WZ
arXiv:1203:0623
Two-body bound state (2D)

\[-\ln d = C + \ln \left(-\frac{i\sqrt{\varepsilon_b}}{2}\right) + (2\pi)\lambda(\varepsilon_b, q)\,.

Takei, et al,
PRA 85, 023626 (2012)

Zhang, Zhang, WZ, arXiv:1203:0623
Two-body bound state (Q2D)

- Two-channel model

\[
H = H_0 + H_{soc} + H_{bf} + H_{int}.
\]

\[
|\Psi\rangle_{\ell,q} = \left(\beta_{\ell,q} b_{\ell,q}^{\dagger} \right)
+ \sum_{m,n,k} \sum_{\sigma,\sigma'} \eta_{m,n,k,q}^{\sigma\sigma'} c_{m,k+q/2,\sigma}^{\dagger} c_{n,-k+q/2,\sigma'}^{\dagger} |0\rangle
\]
Two-body bound state (Q2D)

- $q=0$

![Graph showing $-|E_b(q=0)|$ vs. a_t/a_s for different values of λ. The graph includes curves for $\lambda = 0$, $\lambda = 1$, $\lambda = 2$, and $\lambda = 4$. The y-axis ranges from -20 to 0, and the x-axis ranges from -2 to 4.](image)
Two-body bound state (Q2D)

- $q=0$
Two-body bound state (Q2D)

- General q
Outline

• Introduction
 • BCS-BEC crossover in 2D
 • 2D Fermi gas with Rashba SOC

• Two-body physics in 2D and Q2D
 • Scattering state
 • Bound state

• Many-body physics in Q2D
 • Effective 2D Hamiltonian
 • Q2D Fermi gas with Rashba SOC

• Summary
Effective 2D Hamiltonian (w/o SOC)

Kestner and Duan, PRA 74, 053606 (2006)
Effective 2D Hamiltonian (w/o SOC)

WZ, Lin, Duan, PRA 77, 063613 (2008)
Effective 2D Hamiltonian (w/SOC)

- Q2D model:
 - fermions in ground state \(n=0 \)
 - fermions in excited states \(n=1,2,3\ldots \)
 - Feshbach molecules

- Effective 2D Hamiltonian (2-channel model)
 - 2D Fermions
 - dressed molecules (structureless)

- Matching conditions
 - open channel threshold
 - background scattering
 - two-body binding energy
 - fermions in ground state

\[
\Delta \varepsilon = O \left(\frac{\mu - E_b / 2}{\hbar \omega_z} \right)^2
\]
Effective 2D Hamiltonian

\[H_{\text{eff}} = \sum_{k,\sigma} \varepsilon_k a_{k,\sigma}^\dagger a_{k,\sigma} + \delta_b d_0^\dagger d_0 + \frac{\alpha_b}{L} \sum_k \left(d_0^\dagger a_{k,\uparrow} a_{-k,\downarrow} + \text{H.C.} \right) \]

\[+ \frac{V_b}{L^2} \sum_{k,k'} a_{k,\uparrow}^\dagger a_{-k,\downarrow}^\dagger a_{-k',\downarrow} a_{k',\uparrow} + \gamma' \sum_k \left[(k_x - i k_y) a_{k,\uparrow}^\dagger a_{k,\downarrow} + (k_x + i k_y) a_{k,\downarrow}^\dagger a_{k,\uparrow} \right] \]

\[\gamma' = \gamma; \]

\[V_p^{-1} = \sqrt{2\pi} \left(U_p^{-1} - C_p \right) \]
Effective 2D Hamiltonian

Zhang et al., in preparation
Q2D Fermi gas with Rashba SOC
Q2D Fermi gas with Rashba SOC
unitarity

P=0.1

\[\frac{n}{P} \]

P=0.42

\[\frac{n}{P} \]

P=0.82

\[\frac{n}{P} \]
Summary

• SOC changes the qualitative behavior of 2D scattering state in the low-energy limit (logarithmic -> polynomial)
• SOC enhances the two-body binding energy in Q2D
• The axial excited states become more important
• An effective 2D model incorporating these DOF is required
• In-trap phase diagrams in Q2D Fermi gas can be qualitatively different from the 2D case
Acknowledgements

• Renmin University of China
 • 張芃 (Talk on Sat.)
 • 張仁 (Poster on CIR)
 • 唐俊荣

• USTC
 • 易为 (Talk on Wed.)
 • 吴凡 (Poster on Q2D TSF)
 • Zhang Long