Density matrix renormalization group with long-range interactions and its applications

LUO Hong-Gang (罗洪刚)

Lanzhou University Beijing Computational Science Research Center

Jinhua, 2012.08.14-18

Outline:

- 1) Density matrix renormalization group with long-range interaction
- 2) The t-J-V-W model realized in polar molecule systems
- 3) Some preliminary results

Fundamental issue in quantum chemistry calculation

How to solve the Schrodinger equation of molecules accurately and efficiently ?

$$i\hbar\frac{\partial}{\partial t}\psi(r,R) = \left[-\sum_{i}\frac{\hbar^{2}}{2m_{e}}\nabla_{i}^{2} + V(r,R)\right]\psi(r,R)$$

$$V(r,R) = -\sum_{il} \frac{Z_l e^2}{|r_i - R_l|} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|r_i - r_j|}$$

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

--- P. A. M. Dirac, Proc. R. Soc. Lond. Ser. A123, 714 (1929)

Two errors in solving for the Schrodinger equation

Hartree-Fock limit Hierarchy of one-electron expansions Basis-set limit for Exact solution a given N-electron model Exact solution in a given one-electron basis FCI

Hierarchy of N-electron models

Numerical Obstacle: Exponential Wall

 ✓ Fixing orbital number N
 the total degree of freedom increases exponentially with the number of electrons

✓ Orbital number N is infinity

e.g., for H_2 molecule: If *N* atomic orbitals are used for each atom, then the total number of manybody bases is

$$N^2 (2N^2 - 1)$$

How many degrees of freedom for H₂O?

If *N* molecule orbitals are used, the total number of basis states is

$$C_N^5 C_N^5 \sim N^{10}$$

The total degree of freedom increases exponentially with the number of electrons!

Weak Coupling Approach

Convert a many-body problem into a one-body problem

✓ Hartree-Fock self-consistent mean field theory

✓ Density Functional Theory

- Most successful numerical method for treating weak coupling systems
- Based on LDA or other approximations, less accurate

Strong Coupling Approach

Use a finite set of many-body basis states to treat a correlated system

✓ Configuration Interactions (CI)

- Conceptually simple, but can only deal a small number of orbitals
- ✓ Coupled Cluster Expansion (CC)
 - Perturbative
- ✓ Quantum Monte Carlo
 - Not variational, suffer from the "minus-sign" problem
- ✓ Density matrix renormalization group
 - Variational, accurate and highly controllable

Correlation and Excitations

\checkmark Clor CC: Include single (S), double (D), triple (T) excitations $\overset{\circ}{}$ $$		orbitals HF	single-	double-	triple-excitations
\checkmark Cl or CC: Include single (S), double (D), triple (T) excitations $=$ $=$ $=$ $=$ \checkmark DMRG: Can handle arbitrary many excitations $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$			S	D	Ť
\checkmark Cl or CC: Include single (S), double (D), triple (T) excitations $=$ $=$ $=$ $=$ \checkmark DMRG: Can handle arbitrary many excitations $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ \downarrow \checkmark DMRG: $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ \downarrow \checkmark DMRG: $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ \downarrow \checkmark DMRG: $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \checkmark DMRG: $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ \Box $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \Box $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \Box $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \Box $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ \Box $\uparrow \downarrow$ $\uparrow \downarrow$ $\downarrow \downarrow$ Φ_o Φ_i^a Φ_{ijb}^a Φ_{ijkc}^{abc} Real many-body wave-function \uparrow_1 \uparrow_2 \uparrow_3		—		—	—
\checkmark Cl or CC: Include single (S), double (D), triple (T) excitations $=$ $=$ $=$ $=$ $=$ \checkmark DMRG: $=$ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \checkmark DMRG: Can handle arbitrary many excitations \uparrow \uparrow \uparrow \uparrow \uparrow \checkmark DMRG: \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \checkmark \uparrow \uparrow \uparrow \downarrow \downarrow \checkmark \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow \uparrow \downarrow		—	—	—	—
\checkmark Clor CC: Include single (S), double (D), triple (T) excitations $=$ $=$ $=$ $=$ \checkmark DMRG: $=$ \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \Box \uparrow \uparrow \uparrow \uparrow \downarrow \Box \uparrow \uparrow \uparrow \uparrow \downarrow \Box \uparrow \uparrow \uparrow \downarrow \downarrow \Box \uparrow \uparrow \uparrow \downarrow \downarrow \Box \downarrow \downarrow \downarrow \downarrow \downarrow \Box \downarrow \downarrow \downarrow \downarrow \downarrow \Box \downarrow \downarrow \downarrow \downarrow \downarrow Φ_o Φ_i^a Φ_i^{ab} Φ_i^{abc} Φ_o Φ_i^a Φ_i^{ab} Φ_i^{abc} Φ_o Φ_i^a Φ_i^{ab} Φ_i^{abc} Φ_i Φ_i^a Φ_i^a Φ_i^{ab} Φ_i^b Φ_i^{abc} \uparrow_i^a Φ_i Φ_i^a Φ_i^a Φ_i^a Φ_i Φ_i^a		_	—	_	_
Include single (S), double (D), triple (T) excitationsImage: Construction of the second	\checkmark CL or CC ¹	—	—	—	—
Include single (S), double (D), triple (T) excitations $-$ <br< th=""><th></th><th>—</th><th>—</th><th>—</th><th>—</th></br<>		—	—	—	—
Include single (O), double (D), triple (T)Image (C), image (C), image (C), excitationsImage (C), image (C), imag	Include single (S)	_	_	_	—
double (D), triple (T)excitations111111111111111-111-111-111-111-111-111-111-111-0 Φ_i^a Φ_{ij}^{abc} -TTTT <t< td=""><td></td><td>—</td><td>—</td><td>—</td><td>—</td></t<>		—	—	—	—
uouble (D), thple (T) $=$ $=$ $=$ $=$ $=$ excitations $=$	double (D) triple (T)	—			—
excitations $ +$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $+$ $ +$ $+$ $+$ $ +$ $+$ $+$ $ +$ $+$ $+$ $ +$ $+$		_	_	_	—
excitations $ -$ Can handle arbitrary many excitations $ -$ <td>ovoitations</td> <td>—</td> <td>—</td> <td>—</td> <td>— ↑</td>	ovoitations	—	—	—	— ↑
- $\overline{\downarrow}$ $\widehat{\downarrow}$ $\widehat{\downarrow}$ $\widehat{\downarrow}$ • DMRG: Can handle arbitrary many excitations $\widehat{\uparrow}\downarrow$ $\widehat{\uparrow}\downarrow$ $\widehat{\uparrow}\downarrow$ $\widehat{\uparrow}\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\downarrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\downarrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\downarrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\downarrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ $\widehat{\uparrow}\downarrow\downarrow$ Φ_o Φ_i^a Φ_{ijb}^{abc} Φ_o Φ_i^a Φ_{ijb}^{abc} Real many-body wave-function $\widehat{\Upsilon}_1$ $\widehat{\Upsilon}_2$	Excitations	_	—	_	<u> </u>
\checkmark DMRG: $\stackrel{-}{\downarrow}$ $\stackrel{-}{\downarrow}$ $\stackrel{-}{\downarrow}$ $\stackrel{-}{\downarrow}$ $\stackrel{+}{\downarrow}$ $\stackrel{+}{\downarrow}$ \checkmark DMRG: $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\downarrow}$ Can handle arbitrary many excitations $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\downarrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\uparrow\downarrow}$ $\stackrel{+}{\Phi_o}$ $\stackrel{\Phi_a}{\Phi_i^a}$ $\stackrel{\Phi_a}{\Phi_{ijk}^a$ $\stackrel{\Phi_a}{\Phi_{ijk}^a$ Real many-body wave-function $\stackrel{+}{\Upsilon_1$ $\stackrel{+}{\Upsilon_2$ $\stackrel{+}{\Upsilon_3$				\uparrow	↑
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		—	-	<u> </u>	<u> </u>
\checkmark DMRG: Can handle arbitrary many excitations $\uparrow\downarrow$ \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow <b< td=""><td></td><td>_</td><td>$\overline{\uparrow}$</td><td>$\overline{\uparrow}$</td><td>$\overline{\uparrow}$</td></b<>		_	$\overline{\uparrow}$	$\overline{\uparrow}$	$\overline{\uparrow}$
Image: Constraint of the second se		<u>م</u> ا	*	*	*
Can handle arbitrary many excitations $\hat{\uparrow}\downarrow$ $\hat{\downarrow}\downarrow$ $\hat{\uparrow}\downarrow$ $\hat{\uparrow}\downarrow$ $\hat{\uparrow}\downarrow$ $\hat{\uparrow}\downarrow$ $\hat{\uparrow}\downarrow$ $\hat{\uparrow}\downarrow$ $\hat{\uparrow}\downarrow$ $\hat{\uparrow}\downarrow$ $\hat{\downarrow}\downarrow$ <td></td> <td>$\downarrow\downarrow$</td> <td><u> </u></td> <td></td> <td></td>		$\downarrow\downarrow$	<u> </u>		
Can nancle arbitrary many excitations $\vec{1} \neq \vec{1} \neq $		1	11		1
many excitations $\hat{1}$ <td>Can nangle arbitrary</td> <td></td> <td></td> <td><u>*</u></td> <td><u>+</u></td>	Can nangle arbitrary			<u>*</u>	<u>+</u>
many excitations $\widehat{\uparrow\downarrow}$ Φ_o Φ_i^a Φ_{ijk}^{abc} Real many-body wave-function \widehat{T}_1 \widehat{T}_2 \widehat{T}_3	'1 1'	<u> </u>			\downarrow
$\hat{\uparrow}_{\downarrow}$ $\hat{\uparrow}_{\downarrow}$ $\hat{\uparrow}_{\downarrow}$ $\hat{\uparrow}_{\downarrow}$ $\hat{\uparrow}_{\downarrow}$ Φ_{o} Φ_{i}^{a} Φ_{ij}^{ab} Φ_{ijk}^{abc} Real many-body wave-function \hat{T}_{1} \hat{T}_{2} \hat{T}_{3}	many excitations	 ↑	<u>↑</u>	\uparrow	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J	<u> ↓</u>	1+	<u> ↓</u>	
$\begin{array}{cccc} \Phi_{o} & \Phi_{i}^{a} & \Phi_{ij}^{ab} & \Phi_{ijk}^{abc} \\ \end{array}$ Real many-body wave-function $\hat{T}_{1} & \hat{T}_{2} & \hat{T}_{3} \\ \end{array}$		$\underline{\uparrow\downarrow}$	<u>1</u>	$\underline{\uparrow\downarrow}$	$\uparrow\downarrow$
Real many-body wave-function \hat{T}_1 \hat{T}_2 \hat{T}_3		Φ_{0}	$\Phi^{\mathrm{a}}_{\mathrm{i}}$	$\Phi^{ m ab}_{ m cc}$	Φ_{iik}^{abc}
Real many-body wave-function \hat{T}_1 \hat{T}_2 \hat{T}_3		Ū	1	IJ	- -
	Real many-body wave-fund	ction	$\hat{\mathrm{T}}_{1}$	$\hat{\mathrm{T}}_2$	$\hat{\mathrm{T}}_{3}$
$\hat{\mathbf{C}}_1$ $\hat{\mathbf{C}}_2$ $\hat{\mathbf{C}}_3$			$\hat{\mathbf{C}}_1$	$\hat{\mathbf{C}}_2$	$\hat{\mathbf{C}}_{3}$

Configuration Interaction and Coupled Cluster Expansion

Full CI

$$|\Phi\rangle = c_0 |\Phi_0\rangle + c_s |S\rangle + c_D |D\rangle + c_T |T\rangle + c_Q |Q\rangle + \cdots$$
CISD

$$|\Phi\rangle = c_0 |\Phi_0\rangle + c_s |S\rangle + c_D |D\rangle + \overline{c_T |T} + c_Q |Q\rangle + \cdots$$

Coupled-cluster expansion

$$\Psi_{cc} = \exp(T) |\Phi_0\rangle = \left(1 + T + \frac{1}{2}T^2 + \cdots\right) |\Phi_0\rangle$$
$$T = T_1 + T_2 + \cdots$$

Accuracy of different methods

S. R. White and R. Martin, J. Chem. Phys. 110, 4127 (1999)

Main difficulty: treating accurately the correlation, needing large basis

Feature Article

Electron Correlation: The Many-Body Problem at the Heart of Chemistry

DAVID P. TEW,¹ WIM KLOPPER,¹ TRYGVE HELGAKER²

¹Lehrstuhl für Theoretische Chemie, Institut für Physikalische Chemie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany ²Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, N-0315 Oslo, Norway

J. Comput. Chem. 28, 1307 (2007)

A toy model for Helium atom:

The electron-electron cusp:

A problem can not be precisely treated with the products of smooth orbital functions

J. Comput. Chem. 28, 1307 (2007)

Quantum chemistry density matrix renormalization group

Brief history of the *ab inito* quantum chemistry DMRG

How to apply DMRG to Quantum Chemistry

To represent the Hamiltonian using a set of HF molecular orbitals

$$H = \sum_{ij\sigma}^{N} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{1}{2} \sum_{ijrt,\sigma\sigma'}^{N} V_{ijrt} c_{i\sigma}^{\dagger} c_{j\sigma'}^{\dagger} c_{t\sigma'} c_{r\sigma}$$

$$t_{ij} = \int dr \varphi_{i}^{*}(r) \left[-\frac{1}{2} \Delta - \sum_{k=1}^{N} \frac{Z_{k} e^{2}}{|r - r_{k}|} \right] \varphi_{j}(r)$$

$$V_{ijrt} = \int \int dr dr' \varphi_{i}^{*}(r) \varphi_{j}^{*}(r') \left[\frac{e^{2}}{|r_{i} - r_{j}|} \right] \varphi_{t}(r') \varphi_{r}(r)$$

Molecular orbital: HF single particle basis

But,

$$\hat{H} = \sum_{ij}^{N} t_{ij} c_{i}^{+} c_{j}^{-} + \frac{1}{2} \sum_{ijkl}^{N} V_{ijkl} c_{i}^{+} c_{j}^{-} c_{k}^{+} c_{l}^{-}$$

$$N^{4} \text{ terms!}$$

There are too many interaction terms: $O(N^4)$ compute time and storage cost: > $O(N^5)$

Only a small number of molecular orbitals can be used

Impractical !

Regrouping Operators:

T Xiang, Phys Rev B **53**,R10445 (96)

$$\left| \hat{H} = \sum_{ij}^{N} t_{ij} c_{i}^{+} c_{j} + \frac{1}{2} \sum_{ijkl}^{N} V_{ijkl} c_{i}^{+} c_{j} c_{k}^{+} c_{l} \right|$$

But,

$$\hat{H} = \sum_{ij}^{N} t_{ij} c_{i}^{+} c_{j} + \frac{1}{2} \sum_{ijkl}^{N} V_{ijkl} c_{i}^{+} c_{j} c_{k}^{+} c_{l}$$

$$N^{4} \text{ terms!}$$

There are too many interaction terms: $O(N^4)$ compute time and storage cost: > $O(N^5)$

Only a small number of molecular orbitals can be used

Practical !

First *ab initio* DMRG Calculation of Molecules

Use 25 H₂O molecular orbitals

DMRG: 1s² of oxygen is frozen

S. R. White and R. Martin, J. Chem. Phys. 110, 4127 (1999)

Exact solution (within a triple-zeta, double polarization basis set) of the electronic Schrodinger equation for water

Garnet Kin-Lic Chan Department of Chemistry, University of Cambridge, United Kingdom CB2 1EW

Martin Head-Gordon Department of Chemistry, University of California, Berkeley, California 94070 41 orbitals

Orbital #: N	Unrestricted Hartree-Fock	Coupled Cluster (SDT)	DMRG ¹	Quantum Monte Carlo ²
41	-85.254555	-85.511075	-85.511649 (M=6000)	-85.5132(6)
			Benchmark	

 ✓ This was the largest "exact" calculation done (Dimension of Hilbert space: 5.6 x 10¹¹)

² Shiwei Zhang et al J. Chem. Phys. 124, 224101 (2006)

	UHF	CCSD(T)	FCI/DMRG	QMC		
STO-6G					WA Al-Saidi Shiwei Zh	ang
Н	-0.471039	-0.471039	-0.471039	-0.471039	and H Krakauer I Chem	, ,
0	-74.516816	-74.516816	-74.516816	-74.516816	$\frac{124}{224101}$	1.
H_2O	-75.676506	-75.727931	-75.727991	-75.7285(1)	Phys. 124, 224101 (2006))
BE	0.217612	0.269037	0.269097	0.2695(1)		
1007						
cc-pvDZ	a (60 a=a	0 400 0 - 0		0.400.050		
Н	-0.499278	-0.499278	-0.499278	-0.499 278		
0	-74.792166	-74.911552	-74.911744	-74.9096(1)		
H_2O	-76.024039	-76.241201	-76.241860	-76.2424(2)		
BE	$0.233\ 317$	0.331093	$0.331\ 560$	0.3343(2)	Chan and Haad	
DZ ANO	41 HF or	bitals			Gordon, 2003	
Η	-0.499944	-0.499944	-0.499944	-0.499944		
0	-74.816273	-74.961956	-74.962350	-74.9596(1)		
H_2O	$-76.057\ 621$	$-76.314\ 141$	-76.314715	-76.3163(6)		
BE	0.241460	$0.352\ 959$	0.352477	0.3568(7)		
		I. 14 - I			Benchmark is missing!	!
TZ ANO	92 HF Or	DITAIS			Ŭ	
Η	-0.499973	-0.499973	*	-0.499973		
0	-74.818648	$-75.000\ 129$?	-74.9970(4)		
H_2O	-76.060589	-76.367528		-76.370(1)		
BE	0.241995	$0.367\ 453$		0.373(1)		

The number of single-electron basis states that can be handled by the DMRG is larger than in Full CI, but still limited

Orbital #: N	Unrestricted Hartree-Fock	Coupled Cluster (SDT)	DMRG ¹	Quantum Monte Carlo ²
41	-85.254555	-85.511075	-85.511649 (M=6000)	-85.5132(6)
92	-85.257519	-85.564462	?	-85.567(1)

How to solve this problem?

Optimize the single-electron basis state by DMRG

Step 1:

- Start from a large basis set (say 200 orbitals), partition the basis set into three subsets, core orbitals, active orbitals and virtual orbitals
- Freeze the core and virtual orbitals
- Perform the DMRG calculation in the active space

Core orbitals doubly occupied	Active space	Virtual orbitals unoccupied
----------------------------------	--------------	--------------------------------

DMRG treatment

Step 2:

• Optimize the single-electron basis states by diagonalizing the single-particle density matrix deduced from the DMRG wave function in the active space

Core orbitals doubly occupied	Active space	Virtual orbitals unoccupied
	$\rho_{ij} = \langle \psi c_i^+ c_j^- \psi \rangle$	

Step 3:

• Swap a few orbitals between the active and inactive spaces, so that some inactive orbitals can be activated and optimized

Activate a few 'frozen' previously orbitals in the inactive spaces.

Meanwhile, freeze the less important a few orbitals in the active space.

Step 4:

- Repeat the above steps so that all orbitals are activated and optimized, this complete a full cycle of optimization
- This cycle can be repeated more than once

Some details

Each point is a full cycle of DMRG iteration

M = 128

After the single-particle basis is optimized, the result is significantly improved with much cheaper cost.

H.-G. Luo, M.-P. Qin, T. Xiang, PRB 81, 235129 (2010); arXiv:1002.1287

 $E_{qs} = -85.575(a.u.)$

 $(N_{tot} = 172 \text{ orbitals}, N = 61 \text{ orbitals}, M = 128, M_{max} = 512)$

Orbital #: N	Unrestricte d Hartree- Fock	Coupled Cluster (SDT)	DMRG ¹	Quantum Monte Carlo ²	Exp
41	-85.254555	-85.511075	-85.511649 (M=6000)	-85.5132(6)	-85.677
92	-85.257519	-85.564462		-85.567(1)	?

- The result agrees with the CCSDT and QMC results with N=92
- DMRG has great potential to further improve the result

Outline:

- 1) Density matrix renormalization group with long-range interaction
- 2) The t-J-V-W model realized in polar molecule systems
- 3) Some preliminary results

Why t-J model?

An important model for strongly correlated electron systems, especially for the thoretical description of high-temperature superconductors (HTS).

$$H = -t \sum_{\langle i,j \rangle,\sigma} \left(c_i^+ c_j + h.c. \right) + J \sum_{\langle i,j \rangle} \left(S_i^+ S_j^- + S_i^z S_j^z - \frac{1}{4} n_i n_j \right)$$

2-d plane of HTS

Schematic phase diagram of high-Tc superconductors

Why polar molecule ?

A polar molecular in a dc electric field is describe by the rigid-rotor Hamiltonian:

$$H_0 = B\hat{N}^2 - d_0 E$$

with the rotational constant B and the angular momentum operator N.

Two important features:

- 1) Permanent dipole moment \rightarrow manipulated with external fields
- *2) Rich internal level structure of diatomic polar molecules* \rightarrow *Mircrowave field control*

$$E_{dd} = \frac{1}{4\pi\epsilon_0 |\mathbf{R_i} - \mathbf{R_j}|^3} [\boldsymbol{\mu}_i \cdot \boldsymbol{\mu}_j - 3(\boldsymbol{\mu}_i \cdot \hat{\mathbf{z}})(\boldsymbol{\mu}_j \cdot \hat{\mathbf{z}})]$$

= $V_{dd}(\mathbf{R_i} - \mathbf{R_j})(\boldsymbol{\mu}_0 n_{im_0} + \boldsymbol{\mu}_1 n_{im_1})(\boldsymbol{\mu}_0 n_{jm_0} + \boldsymbol{\mu}_1 n_{jm_1})$
= $V_{dd}(\mathbf{R_i} - \mathbf{R_j})[J_z S_i^z S_j^z + V n_i n_j + W(n_i S_j^z + n_j S_i^z)]$
where $J_z = (\mu_0 - \mu_1)^2$, $V = (\mu_0 + \mu_1)^2/4$, and $W = (\mu_0^2 - \mu_1^2)/2$. The V term describes density-density interactions, and

Combining the microwave fields and the external dc electric fields, plus the tunneling effect, the magnitude and its sign can be tuned independently

$$H = -\sum_{\langle i,j\rangle m\sigma} t_m [c_{im\sigma}^{\dagger} c_{jm\sigma} + \text{H.c.}] + \frac{1}{2} \sum_{i\neq j} V_{\text{dd}}(\mathbf{R}_i - \mathbf{R}_j)$$

$$\times \left[J_z S_i^z S_j^z + \frac{J_\perp}{2} (S_i^+ S_j^- + S_i^- S_j^+) + V n_i n_j + W (n_i S_j^z + n_j S_i^z) \right]. \qquad ($$

A. V. Gorshkov et al., PRL 107, 115305 (2011) A. V. Gorshkov et al., PRA 84, 033619 (2011)

a generation of t-J model in experiment

(a)Eigenenergies as a function of E; Examples of level configurations $\{|m_0\rangle, |m_1\rangle\}$

- (b) $\left\{\sqrt{a}|0\rangle + \sqrt{1-a}|\overline{1}\rangle, |1\rangle\right\}$
- (c) $\left\{ \sqrt{a} \left| \hat{2} \right\rangle + \sqrt{1-a} \left| \overline{2} \right\rangle, \sqrt{b} \left| 1 \right\rangle + \sqrt{c} \left| \overline{1} \right\rangle + \sqrt{1-b-c} \left| 2 \right\rangle \right\}$

where the coefficient *a,b,c* in the dressed state $|m_0\rangle$, $|m_1\rangle$ is controlled by the ratio between the Rabi frequency and the detuning of a σ +-polarized microwave field acting on the $|0\rangle \leftrightarrow |\overline{1}\rangle$ transition.

A.V.Gorshkov et al. Phys. Rev. Lett 107, 115301 (2011)

Ground phase diagram of 1-d t-J model with nearest-neighbor interaction

The phases of 1-d t-J model display a correspondence to the ones present in HTS of 2-d case.

A. Moreno et al. Phys. Rev. B 83, 205113 (2011)

Motivations of our work with long-range interaction:

1) Enlarge the superconducting region;
 2) Challenge for density matrix renormalization group (DMRG).

phase diagram of 1-d t-J-V-W model

We consider a simple case of the t-J-V-W model that $J_z = J_{\perp} = V$ and W = 0:

$$H = -t \sum_{\langle i,j \rangle,\sigma} \left(c_i^+ c_j + h.c. \right) + \sum_{i \neq j} \left| R_i - R_j \right|^{-3} J \left(S_i^+ S_j^- + S_i^z S_j^z - \frac{1}{4} n_i n_j \right)$$

We set t=1. Calculations are taken in the parameter space of $n=0.1\sim0.9$ with $\Delta n=0.1$ and $J=0.25\sim4.0$ with $\Delta n=0.25$.

DMRG techniques

What is the reasonable number of sweeps?

Ground state energy as a function of dmrg steps is showed in left figure. Energy leap occurs between each two neighbor sweeps.

We define <E(i)> as the average energy of sweep i and the energy error:

$$Error(i) = \frac{\left\langle E(i-1) \right\rangle - \left\langle E(i) \right\rangle}{\left\langle E(i) \right\rangle}$$

In our calculation, dmrg process complete when $Error(i) < 10^{-8}$, number of sweeps float from 11 to 67.

phase diagram of 1-d t-J-V-W model

DMRG directly get the wavefunction and ground state energy of the system. All observables should be calculated by:

$$O = \left\langle \Psi \left| \hat{A} \right| \Psi \right\rangle$$

1-d system with weak interactions could be will described by the Luttingerliquid theory, that its correlation functions can be explicitly evaluated.

Main structure factors and correlation functions:

		$X(k) = \frac{1}{L} \sum_{i,j=1}^{L} e^{ik(x_i - x_j)} X_{ij}$
density-density correlation:	$N_{ij} = \langle n_i n_j \rangle - \langle n_i \rangle \langle n_j \rangle$	N(k)
spin-spin correlation:	$S_{ij} = \left\langle S_i^z S_j^z \right\rangle$	S(k)
Green's function:	$G_{ij}^{\sigma}=\left\langle c_{i,\sigma}^{+}c_{j,\sigma} ight angle$	n(k) (momentum distribution)

Luttinger parameter K_{ρ} could be the order parameter to characterize the phase of metallic (K ρ <1) and superconducting (K ρ >1) in Luttinger liquid region.

 K_{ρ} is determined by the K_ =0.78352 0.3 relationship: n=0.5,J=2.0 0.25 $N(k) \rightarrow \frac{a|k|}{\pi} K_{\rho}$ when $k \rightarrow 0$ 0.2 N(k) where lattice constant a=1. 0.15 0.1 A clear linear behavior for small k can be observed in 0.05 right figure. In our calculation, we choose: 0.1 0.2 0.3 0.4 0.5 0.6 0.8 í٥ 0.7 $K_{\rho} = N(k = 0.05 \pi).$

Structure factor N(k) of density-density correlation

k/π

L=80 L=100

L=120

0.9

N(k) appears to be almost independent of the lattice size, as show in this figure.

Results showed in the report we choose L=100 as the approximation of thermal dynamics limit.

Structure factor N(k) of density-density correlation

superconductor.

Characteristic peaks of the structure factors

N(k):

 $4k_F$ peak in metallic phase as J increases, thus peak is suppressed and a $2k_F$ cusp form in superconducting phase

S(k): 2k_F peak in metallic phase (antiferromagneric order means no SC)

Real space density. Either metallic or superconducting phase shows charge density wave behavior (Friedel oscillations) in real space.

Momentum distribution in k space. There is a clear fermi surface in both case, and a weak anomaly at $3k_F$. Superconducting sames more fermi? Acknowledgment:

Prof. Tao Xiang (IOP/ITP, CAS) Ming-Pu Qin (IOP, CAS)

Chen Cheng (Lanzhou Univ.) Fu-Zhou Chen (Lanzhou Univ.)

Thank you for your attention !