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Bose-Hubbard Model

H = −t
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b†l bl+1 + H.C.

)
+

L∑
l=1

Vlb
†
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generalized commutation relations

aja
†
l = δjl − e−iθε(j−l)a†l aj,

ajal = −eiθε(j−l)alaj (3)

Anyon-Bose transformation

aj = exp

iθ
∑

1≤s<j

b†sbs

 bj,

a†j = b†j exp

−iθ
∑

1≤s<j

b†sbs


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of a few kHz), which is necessary to selectively couple to the four 
different states in the ground state manifold.

Second, one can use two optical lattices, and trap ground state 
manifold atoms in the red-detuned lattice, while the excited state 
would live in the blue-detuned one. The driving fields necessary in 
this case would be then, however, typically in the THz frequency 
range, making a precise resolution of U and ∆ more challeng-
ing for the experimentalist: in principle, a laser with a linewidth 
δlinewidth  U, ∆ would be needed.

The effective tunnelling rates Jab (a∈{1, 2}, b∈{3, 4}) are calcu-
lated for four -systems, laser frequencies ωi, and Rabi frequen-
cies Ωi (i∈{1, 2, 3, 4}) via adiabatic elimination, see Methods. We 
emphasize that the tilt energy ∆ disappears in the effective Hamil-
tonian after rotating out time-dependent phase factors: indeed this 
energy offset is absorbed (or released) by the external radiation field, 
yielding a total Hamiltonian without a tilt term (see also Jaksch and 
Zoller19 on this issue).

The following conditions on the effective tunnelling rates Jab have 
to be satisfied in order to realize our model in equation (4): 

J J J23 24= ≡ ,

 J J J13 14= ,≡ eiq

(5)(5)

(6)(6)

where θ is the anyonic exchange phase. For a more detailed consid-
eration of realistic energy scales and appropriate parameter regimes, 
see Methods.

Density in quasi-momentum space. We have computed the 
ground state wave function for the conditional-hopping Bose–Hub-
bard model, equation (4), using the Density Matrix Renormaliza-
tion Group (DMRG)24,25. In Figure 2, we plot the quasi-momentum 
distribution 

〈 〉 〈 〉∑ −n
L

b bk
ij

k xi x j
i j= 1 ( )ei †

as a function of the statistical phase angle θ. The case θ = 0 corre-
sponds to ordinary bosons, which for the parameters chosen quasi-
condense. The density distribution in quasi-momentum space,  
equation (7), is thus peaked at k = 0. Increasing θ to non-zero val-
ues, we find that the position of the peaks θmax (k) is shifted as a 
nonlinear function of k. Indeed, for fillings N/L > 1 one finds a quad-
ratic behaviour θmax (k) = α(k − k0)2 + β. For fillings close to N/L = 1, 
β→π, k0→π and α→ − 1/π. For higher fillings N/L →2, these fitting  
parameters are altered, however, the characteristic quadratic 
dependence is conserved.

In this analysis, we find two important characteristics of con-
ditional-hopping bosons and thus anyons in 1D. The quadratic 
dependence of θmax on k contrasts ordinary magnetic fields (with 
a constant phase factor eiθ in the kinetic Hamiltonian). In this case, 
the shift of the peaks depends linearly on the phase angle θ. In the 
anyonic case, however, the growth of correlations with increasing 
θ may induce the characteristic quadratic trace, which could be 
directly observed in OL experiments using standard time-of-flight 
imaging.

An even more important observation is that the contrast of the 
peaks (and the phase coherence) decays with increasing θ. The peak 
values 〈nk(θ = θmax)〉 are plotted in the inset of Figure 2, in the pseud-
ofermionic limit (θ→π) the peak is almost washed out. This suggests 
that an increase of θ transforms the initial quasi-condensate into a 
quantum state where all phase coherence is lost. It will become evi-
dent in the subsequent paragraphs that this quantum state will turn 
out to be a Mott-like state, with Mott plateaus emerging at fractional 
densities. We emphasize that this quantum phase transition is only 
driven by the statistical angle θ, all other parameters such as J/U 
are fixed. The loss of coherence can be understood as follows. With 

(7)(7)
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Figure 1 | Anyon–Boson mapping and schematic of the proposed 
experiment. (a) Anyons in 1D can be mapped onto bosons featuring 
occupation-dependent hopping amplitudes. (b) Assisted Raman 
tunnelling can selectively address hopping processes connecting different 
occupational states and induce a relative phase, realizing a fully tuneable 
particle exchange statistics angle θ. Energies are not in scale. 
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Figure 2 | Density distribution in quasi-momentum space 〈nk〉 as a 
function of particle statistics θ. The shift of the density peaks with 
increasing θ displays a characteristic quadratic behaviour. The fit to the 
trace of density maxima is depicted in white and yields fitting parameters 
k0 = 0.9828π, α =  − 1.0511/π, β = 0.9982π. The inset displays the decrease 
of the peak occupations with θ (yellow circles) and indicates the 
statistically induced phase transition from a superfluid to a Mott-like state. 
Parameters: L = 30, N = 31, U/J = 0.2. 
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Figure 2 | Density distribution in quasi-momentum space 〈nk〉 as a 
function of particle statistics θ. The shift of the density peaks with 
increasing θ displays a characteristic quadratic behaviour. The fit to the 
trace of density maxima is depicted in white and yields fitting parameters 
k0 = 0.9828π, α =  − 1.0511/π, β = 0.9982π. The inset displays the decrease 
of the peak occupations with θ (yellow circles) and indicates the 
statistically induced phase transition from a superfluid to a Mott-like state. 
Parameters: L = 30, N = 31, U/J = 0.2. 

Figure: nature commu 2, 361 (2011): Anyon–Boson mapping and
schematic of the proposed experiment.
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Hamiltonian

H = −t
L∑

l=1

(
a†l+1al + H.C.

)
+

L∑
l=1

Vla
†
l al (6)

with Vl = V0(l− (L + 1)/2)2 . Quench V0!!!

generalized commutation relations

aja
†
l = δjl − e−iχπε(j−l)a†l aj,

ajal = −eiχπε(j−l)alaj (7)

χ:statistical parameter ∈ [0, 1].

The hard core condition:

a2
l = a†2l = 0 and

{
al, a

†
l

}
= 1.

Yajiang Hao (USTB) Ground State and Dynamics of 1D Hard Core Anyons



Trapped in optical lattice combined with a weak harmonic trap Hard core anyons in a harmonic trap ConclusionModel and Method Ground State closing harmonic trap harmonic trap becoming weaker

Hamiltonian

H = −t
L∑

l=1

(
a†l+1al + H.C.

)
+

L∑
l=1

Vla
†
l al (6)

with Vl = V0(l− (L + 1)/2)2 . Quench V0!!!

generalized commutation relations

aja
†
l = δjl − e−iχπε(j−l)a†l aj,

ajal = −eiχπε(j−l)alaj (7)

χ:statistical parameter ∈ [0, 1].

The hard core condition:

a2
l = a†2l = 0 and

{
al, a

†
l

}
= 1.

Yajiang Hao (USTB) Ground State and Dynamics of 1D Hard Core Anyons



Trapped in optical lattice combined with a weak harmonic trap Hard core anyons in a harmonic trap ConclusionModel and Method Ground State closing harmonic trap harmonic trap becoming weaker

Hamiltonian

H = −t
L∑

l=1

(
a†l+1al + H.C.

)
+

L∑
l=1

Vla
†
l al (6)

with Vl = V0(l− (L + 1)/2)2 . Quench V0!!!

generalized commutation relations

aja
†
l = δjl − e−iχπε(j−l)a†l aj,

ajal = −eiχπε(j−l)alaj (7)

χ:statistical parameter ∈ [0, 1].

The hard core condition:

a2
l = a†2l = 0 and

{
al, a

†
l

}
= 1.

Yajiang Hao (USTB) Ground State and Dynamics of 1D Hard Core Anyons



Trapped in optical lattice combined with a weak harmonic trap Hard core anyons in a harmonic trap ConclusionModel and Method Ground State closing harmonic trap harmonic trap becoming weaker

using the generalized Jordan-Wigner transformation

aj = exp

iχπ
∑

1≤s<j

f †s fs

 fj, (8)

a†j = f †j exp

−iχπ
∑

1≤s<j

f †s fs

 , (9)

HF = −t
L∑

l=1

(
f †l+1fl + H.C.

)
+

L∑
l=1

Vlf
†
l fl, (10)

Based on the single particle wavefunction, the exact many body
wavefunction of anyons can be constructed! Therefore......
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Fermion’s wavefunction

The eigenstates of single-particle

|α〉 = c†α |0〉 =
∑

l

ϕα (l) f †l |0〉 .

The many body state of Nf free spinless Fermions

|ΨF〉 = c†1c†2 · · · c
†
Nf
|0〉

=
∑

l1l2···lNf

ϕ1 (l1)ϕ2 (l2) · · ·ϕNf

(
lNf

)
f †l1 f †l2 · · · f

†
lNf
|0〉

=

Nf∏
n=1

L∑
l=1

Plnf †l |0〉

with Pln = ϕn (l).
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The equal-time Green’s function for the hard core anyons at
time τ should be expressed as

Gjl (τ) =
〈

ΨHCA (τ)
∣∣∣aja

†
l

∣∣∣ΨHCA (τ)
〉

(11)

= 〈ΨF (τ)| exp

iχπ
j−1∑
β

f †β fβ

 fjf
†
l exp

(
−iπ

l−1∑
γ

f †γ fγ

)
|ΨF (τ)〉

=
〈
ΨA

F (τ) |ΨB
F (τ)

〉
with〈
ΨA

F (τ)
∣∣ =

(
f †j exp

(
−iχπ

∑j−1
β f †β fβ

)
|ΨF (τ)〉

)†
∣∣ΨB

F (τ)
〉

= f †l exp
(
−iχπ

∑l−1
γ f †γ fγ

)
|ΨF (τ)〉 .
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time τ should be expressed as

Gjl (τ) =
〈

ΨHCA (τ)
∣∣∣aja

†
l

∣∣∣ΨHCA (τ)
〉

(11)

= 〈ΨF (τ)| exp

iχπ
j−1∑
β

f †β fβ

 fjf
†
l exp

(
−iπ

l−1∑
γ

f †γ fγ

)
|ΨF (τ)〉

=
〈
ΨA

F (τ) |ΨB
F (τ)

〉
with〈
ΨA

F (τ)
∣∣ =

(
f †j exp

(
−iχπ

∑j−1
β f †β fβ

)
|ΨF (τ)〉

)†
∣∣ΨB

F (τ)
〉

= f †l exp
(
−iχπ

∑l−1
γ f †γ fγ

)
|ΨF (τ)〉 .
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|ΨF〉 =

Nf∏
n=1

L∑
l=1

Plnf †l |0〉 (12)

∣∣ΨA
F (τ)

〉
= f †l exp

(
−iχπ

l−1∑
γ

f †γ fγ

)
|ΨF (τ)〉 . (13)

∣∣ΨA
F
〉

=

Nf +1∏
n=1

L∑
l=1

P′Aln f †l |0〉

Gjl =
〈
ΨA

F|ΨB
F
〉

= det
[(

P′A
)T P′B

]
. (14)

The Green’s function can be obtained by evaluate the
determinant of (N + 1)× (N + 1) matrix.
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The reduced one body density matrix (ROBDM) can be
evaluated by Green’s function

ρjl (τ) =
〈

a†j al

〉
= δjl

(
1− Gjl (τ)

)
− (1− δjl)e−iχπGjl (τ) .

momentum distribution

n(k) =
1

2π

L∑
j,l=1

e−ik(j−l)ρjl(τ). (15)

natural orbitals φη

L∑
j=1

ρjlφ
η = ληφ

η, j = 1, 2, ...L, (16)
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Figure: The momentum distributions for 50 hard core anyons in a
lattice of 300 sites. V0 = 0.0.
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Figure: The momentum distributions for 50 (a) and 150 (b) hard core
anyons in lattice of 300 sites combined with a harmonic trap.
V I

0 = 1.0× 10−4t.
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Figure: The reduced one body density matrix for 50 hard core anyons
in lattice of 300 sites. V I

0 = 1.0× 10−4t.
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Figure: The evolving of density distribution for 50 hard core anyons in
optical lattice of 500 sites. V I

0 = 1.0× 10−4t and V0 = 1.0× 10−8t.
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Figure: The momentum distributions for 50 hard core anyons in lattice
of 500 sites, V I

0 = 1.0× 10−3t and V0 = 1.0× 10−8t. (a) τ = 0, (b)
τ = 20, (c) τ = 50,(d) τ = 100.
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Figure: The momentum distribution of 50 anyons in lattice of 300
sites. V I

0 = 1.0× 10−2t and V0 = 1.0× 10−8t. (a) τ = 0, (b) τ = 10, (c)
τ = 30,(d) τ = 60. Inset: Density distributions.
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Figure: The occupation distributions for 50 hard core anyons in lattice
of 500 sites, V I

0 = 1.0× 10−3t and V0 = 1.0× 10−8t. (a) τ = 0, (b)
τ = 100.
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Figure: The occupations of the lowest natural orbital for 50 hard core
anyons in lattice of 500 sites. V I

0 = 1.0× 10−3t and V0 = 1.0× 10−8t.
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Figure: The density distribution of 50 hard core anyons in optical
lattice of 300 sites. V I

0 = 1.0× 10−3t and V0 = 2.0× 10−4t.
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Figure: (The momentum distribution of 50 anyons in optical lattice of
300 sites. V I

0 = 1.0× 10−3t and V0 = 2.0× 10−4t. (a) τ = 0, (b) τ = 30,
(c) τ = 60, (d) τ = 80, (e) τ = 100, (f) τ = 120.
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Figure: The occupation of the lowest natural orbital for 50 anyons in
optical lattice of 300 sites. V I

0 = 1.0× 10−3t and V0 = 2.0× 10−4t.
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Fermi-anyon mapping method

We consider N anyons of mass m with the hard core interaction
trapped in a harmonic potential

Vext = mω2x2/2. (17)

anyon Wavefunction

ΦA(x1, · · · , xN) = Aθ(x1, · · · , xN)ΦF (x1, x2, · · · , xN) , (18)

where the anyonic mapping function is formulated as

Aθ(x1, · · · , xN) =
∏

1≤j<k≤N

exp[− iθ
2
ε(xjk)]. (19)
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the wavefunction of N polarized fermions

ΦF (x1, x2, · · · , xN) =
(

1/
√

N!
) N

det
j,k=1

φj (xk) . (20)

Here φj(x) = (
√
π2jj!)−

1
2 e−x2/2Hj(x)

Using the Vandermonde determinant formula
det[pj−1(xk)]j,k=1,··· ,N =

∏
1≤j<k≤N(xj − xk) for {pj(x)}={2−jHj(x)}

and {pj(x) = xj}

Fermi wavefunction

ΦF (x1, x2, · · · , xN) = (CH
N )−1

N∏
j=1

exp(−x2
j /2)

∏
1≤j<k≤N

(xj − xk) (21)

with (CH
N )−2 = π−N/2N!−1∏N−1

j=0 2jj!−1
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the wave function of impenetrable anyons

ΦA (x1, x2, · · · , xN) = Aθ(x1, x2, · · · , xN) (22)

× 1
CH

N

N∏
j=1

exp(−x2
j /2)

∏
1≤j<k≤N

(xj − xk).

ROBDM
the reduced one body density matrix (ROBDM) of anyon gas
can be calculated by

ρ(x, y) = N
∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxN−1 (23)

×Ψ∗A(x1, · · · , xN−1, x)ΨA(x1, · · · , xN−1, y).
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the ROBDM of impenetrable anyons
By an easy calculation we get the concise expression of
ROBDM

ρ (x, y) =
2N−1
√
πΓ (N)

exp(−x2/2− y2/2) (24)

× det[
2(j+k)/2

2
√
π
√

Γ (j) Γ (k)
bj,k (x, y)]j,k=1,··· ,N−1

with bj,k (x, y) =
∫∞
−∞ dtexp(−t2)eiθ(ε(t−x)−ε(t−y))/2(t − x)(ty)tj+k−2.

bj,k(x, y) depend on Gamma function and confluent
hypergeometric function–easy to evaluate!.
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Figure: ROBDM for 40 anyons in a harmonic trap. (a) Fermions; (b)
Bosons; (c) χ=0.5, Re[ρ(x, y)]; (d) χ=0.5, Im[ρ(x, y)].
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momentum distribution

n(k) =
1

2π

∫ ∞
−∞

dx
∫ ∞
−∞

dyρ(x, y)e−ik(x−y).
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Figure: Momentum distribution for 40 anyons.
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a time-dependent harmonic potential Vext = mω2 (t) x2/2

ρ(x, y, t) = N
∫

dx2 · · · dxNΦ∗T(x1, · · · , x; t)ΦT(x1, · · · , y; t)

=
1
b
ρ(

x
b
,

y
b
, 0) exp[− iḃ

bω0

x2 − y2

2l20
]. (25)

Here the concise expression of ROBDM ρ(x, y, 0) at t = 0

ρ (x, y, 0) =
2N−1
√
πΓ (N)

exp(−x2/2− y2/2) (26)

× det[
2(j+k)/2

2
√
π
√

Γ (j) Γ (k)
bj,k (x, y)]j,k=1,··· ,N−1

Rescaling parameter satisfy b̈ + ω2(t)b = ω2
0/b3 with the initial

condition b(0) = 1 and ḃ(0) = 0.
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Yajiang Hao (USTB) Ground State and Dynamics of 1D Hard Core Anyons



Trapped in optical lattice combined with a weak harmonic trap Hard core anyons in a harmonic trap Conclusionmethod for ground state dynamics–similar to the case of ground state

a time-dependent harmonic potential Vext = mω2 (t) x2/2

ρ(x, y, t) = N
∫

dx2 · · · dxNΦ∗T(x1, · · · , x; t)ΦT(x1, · · · , y; t)

=
1
b
ρ(

x
b
,

y
b
, 0) exp[− iḃ
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Fermionization of anyons
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Figure: Momentum distribution for 2 anyons.
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Figure: Momentum distribution for 2 anyons.
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Conclusion

The exact numerical method to deal with the hard-core
anyons confined in the optical lattice superimposed with a
weak harmonic potential.
The physical properties of density profile does not depend
on the statistical parameter .
The physical properties of ROBDM and momentum
distribution depend on the statistical parameter .
The momentum distribution of anyons are asymmetry
about the zero momentum and anyon can bosonize and
ferminize.
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