Quantum Tunneling Effect
of Topological Order
and Topological Quantum Computation

Su-Peng Kou
Beijing Normal university



Outline

 Quantum computation and topological
quantum computation (TQC)

e 7.2 topological order and topological
degeneracy

 Quantum tunneling effect of topological
order

e TQC from quantum tunneling effect



I. Quantum Computing

e Quantum
computers are
predicted to
utilize quantum
states to perform
memory and to
process tasks.




Why Is This Helpful?
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 Multiple computations simultaneously

 Computing power is exponential



Five criteria for physical implementation
of a quantum computer - D. P. DiVincenzo

Well defined extendible qubit - stable memory
Preparable in the “000...” state

Long decoherence time (>104 operation time)
Universal set of gate operations

Single-quantum measurements



Quantum bit - Qubit

e Basis states (0>, |1>

e Arbitrary state:
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Physical qubits

 Nuclear spin = orientation of atom’s nucleus
in magnetic field: T=[0>, J =|1>.

 Photons in a cavity:
No photon = |0>, one photon = [1>
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Quantum Logic Gates
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Frequently Used Gates

 Hadamard:

e Pauli-X:

 Pauli-Y:

e Pauli-Z:

e Phase:
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Physical systems actively considered
for quantum computer implementation

Liquid-state NMR
NMR spin lattices

Linear ion-trap
spectroscopy

Neutral-atom optical
lattices

Cavity QED + atoms

Linear optics with single
photons

Nitrogen vacancies in
diamond

Electrons on liquid He
Josephson junctions arrays

Spin spectroscopies,
impurities in semiconductors

Coupled quantum dots



Quantum
Computer

ﬁ

Decoherence Environment

If quantum information 1s
cleverly encoded, 1t can be
protected from decoherence
and other potential sources of
error. Intricate quantum

ERROR' systems can be accurately

controlled.



Solution?

e Since the topological properties is not changed
by actions such as stretching, squashing and
bending but not by cutting or joining, it
prevents small perturbations from the
environment.




Genus

 The number of holes is called “genus” in
topology.

Pictures courtesy to http://www.math.toronto.edu/~drorbn/People/Eldar/thesis/SurAndHome.htm



Topological Quantum Computer

Anyon

 Ordinarily, every particle in
quantum theory is neatly
classified as either a boson--a
particle happy to fraternize
with any number of identical
particles in a single quantum
state--or a fermion.

 Frank Wilczek used the term
anyons in 1982 to describe
such particles, since they can

Fractional quantum
have "any" phase when Hall states

particles are interchanged.

Courtesy to http://focus.aps.org/story/v16/st14



Exchange statistics in (2+1)D
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e In(3+1)D, T-'=T, while in 2+1)D 7! Z T
e If T71'=T then T2 =1, and the only types of particles are
bosons and fermions.



Abelian Anyons
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 These phase factors realise an Abelian anyon.

* Fractional Quantum Hall state at a filling factor
v=1/m.

 The ground state degeneracy on a torus: m-fold
degenerate ground states for FQHE (Haldane,
Rezayi ’88, Wen °90).




Non-Abelian Anyons

Exchanging particles 1 and 2: Exchanging particles 2 and 3:
wa I Mégwb % B Mfg%

 Matrices M2 and M?3 need not commute, hence Non-
Abelian Statistics.

 Matrices M form a higher-dimensional representation of
the braid-group.

* For fixed particle positions, we have a non-trivial multi-
dimensional Hilbert space where we can store information.



Topological quantum computation (kitaev 97, FLW '00)
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Topological Quantum Computation

Computation Physics

output \ / measure
=
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apply operators / braid
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II. Introduction to Z2 topological order

2D 7.2 topological orders are simplest topological
state with the following three key properties :

e All excitations are gapped
 Stable against all perturbation
e Topological degeneracy

e  Mutual semion statistics.

X. G. Wen PRB, 65, 165113 (2002).



7.2 charge
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7.2 vortex

Mutual semion statistics



Topological degeneracy
of Z2 topological orders

* Topological degeneracy on a torus is always 4




 The topological degeneracy for the Z2 topological
orders is determined by the genus of the Riemann

surface,
N =4’

e gis the genus

=
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Topological qubit

Topological qubit
A. Yu. Kitaev, Annals Phys. 303, 2 (2003) [quant-ph/9707021]
|0> and [1> are the ground-states of a system
which are degenerate because of the (non-trivial) topology.

|¥)=a|0)+ A1)

Advantage 1
The two states are locally indistinguishable I
=> no local perturbation can introduce decoherence. ==
Ioffe, &, Nature 415, 503 (2002). |_> T>

0 1

Questions
How can it be initialized, manipulated and read with local
couplings ?



Topological qubits in Josephson junctions arrays :
realization of RK model on a triangular lattice

Ha= T 0 (J/3/ )]+
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Infinite protection
against weak noise
in thermodynamic
limit

L. B. Ioffe, Nature 415, 503 (2002).



An exact solved model of Z2 topological
order - Wen-plaquette model

F =00 Gi+éx+é Oi,s
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X. G. Wen, PRL. 90,
016803 (2003)




The energy gap
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 For g>0, the ground state is
F =1

The ground state energy is Eo=Ng
The elementary excitation is

F=-1

The energy gap for it becomes

E,-E,=2g, for F=-1




The topological degeneracy on different lattices

< The topological degeneracy depends on

the lattice number L xL,

even-by-even, even-by-odd, odd-by-even, odd-by-odd.

Even |Even |0Odd Odd

by by odd | by by

even even odd
4 2 2 2

S. P. Kou, M. Levin,
X. G. Wen, 0803.2300



Topological characters of Z2 vortex (charge)

 The existence of Z2 vortex (charge) :

7.2 vortex (charge) is defined as a minus sigh of
hopping term of fermions on one plaquette (or
half line of minus sigh )




states with 4-fold degeneracy

Ground




A line of negative sigh along y-direction is
equal to the anti-periodic boundary condition
along x-direction
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II1. Quantum tunneling effect of Z.2
topological order
1. Quantum tunneling effects

Gamow, Barrier penetration

* Nuclear Energy

Nuclear fusion — Hydrogen Bomb

e Josephson junction — D. Josephson (1962

 Macroscopic quantum phenomena ( MQP ) of
nano-magnetic particle



Quantum tunneling effect and level splitting of
ground states in Double-Well

S = jba\/ZmV(x)dx

S : Euclidean action
o . small oscillator frequency near the bottom of potential well



The action of instantons and quantum

tunneling effects

Inverted
potential

-d




Pseudo-spin operator of quantum
tunneling process

We use | 0) and
| 1) to denote
the ground states

in two wells.

Quantum tunneling process | 0) — | 1)

and | 1) — | 0) can be described by a
pseudo-spin operator 7~



Effective spin model of a general
quantum tunneling process

| 0) | 1)

H.=ar"+br’ b oc AE



2. Quantum tunneling efftects in Z.2
topological order

Tunneling processes : a virtual quasi-particle moves
around the torus before annihilated with the other one.

A




Tunneling process of Z, vortex
along x-direction

0,00 — |0,1)
1,00 — | 1,1)
0,1) — | 0,0)
1,1> — | 1,0)
pseudo — spin
operator (|oo)
7, ®1 10)
01)
1D




Effective operators denote

9 tunneling processes

72 vortex |Z2 charge |Fermion
: 7 ®l | 1®r | e
y T, ®7, | 7,®7, | 7, ®T)
YV l1es | el | 11 e

S. P. Kou, arXiv:0805.2714




Calculate the ground state energy splitting from
higher order (degenerate) perturbation approach

The instanton action can be derived by

N\
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S : Euclidean action
L : Hopping length of quasi-particles
t . Hopping integral
Eo: Excited energy of quasi-particles



Effective Hamiltonian
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S. P. Kou, arXiv:0805.2714



Ground states energy splitting of Wen-plaqutte
model under a magnetic field along x-direction
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Ground states energy splitting of Wen-plaqutte
model under a magnetic field along z-direction
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IV. Topological quantum computation by
manipulating quantum tunneling Effect

Qubit :
degenerate ground states of Wen-plaquette
model on odd-by-odd lattice




How to initial, do operation,
measure?



2. Initialization

* Applied a external fields along z-directions,
and then reduce it to zero :

H'=h(t) > 0. where h(t) = e~/ _ 1
 The unitary operator becomes :

iH't

U(t) = e

o Finally at t=0, we have the state | 0.0)

00)






3. Unitary operations

* A general operator becomes :

- [ PP AR U - Yy i N~z
Uy, =e 777 e Pl 7 ) e~ w7

where v = J..At,, 0 = J..Aty and ¢

For example , Hadamard gate is

i



4. Measurement

We want to determine the state

vac) = «|00)+ pe'’|11)

The interference from Aharonov-Bohm (AB)
eftfect allows one to observe distinction
between the processes with or without a flux
inside the loop.



Interference in double slits




Observing AB effect in double slits







>. Unsolved problems

e Itis a challenge to realize the designed spin
model on a manifold of higher genus in the
optical lattice of cold atoms.

* The coefficient of the energy splitting of
degenerate ground states cannot calculated
exactly.






1. Errors

 Thermal effect : at finite temperature,
anyons exist, their braiding leads to error.

 One can not control the operator time
exactly.

* When measurement, the ground state may
still evolves.



2. Possible realization in cold atoms

Kitaev Model H=1J,) olo,+J,) olor+d, ) oo,

x—link y—link z—link

gapless

Vi

The Abel gapped phases Ax, Ay, Az are Z2 topological orders

A. Kitaev, Ann Phys 321, 2 (2006)



Engineering the toy model

e Optical lattice in 2 dimensions: polarizations & frequencies
of standing waves can be different for different directions

Kitaev model on honeycomb lattice Can be created with 3 sets of
standing wave light beams.

L.-M. Duan, E. Demler, and M. D. Lukin,
Phys. Rev. Lett. 91, 090402 (2003).




Wen-plaquette model as low energy effective
model of Kitaev model on honeycomb lattice

H:leaﬁa:]—h]zzGXG%+J3ZJ§O'§]_> p
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QP = Oleft (p) Oright (p) Otlp(p) Odown(p)



3. The statistics for the elementary

excitations
There are two kinds of Bosonic excitations:
7.2 vortex .
Fieix+iy:even =-1
21 charge Fieix+iy:odd =-1

Each kind of excitations moves on each sub-
plaquette:

Why‘) ® L2 L L - @ @
° -1 1 1 1 1 1
L ) @ © @ L .
1 1 1 -1 1 1
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 There are two constraints (the even-by-even lattice):
One for the even plaquettes, the other for the odd
plaquettes

H |:Iel y =even :1 H |:Iel +1,=0dd :1

ici, + , =even lei, +| =odd

 The hopping from even plaquette to odd violates
the constraints

e The Z2 vortex turns
into Z2 charge 1| 1|




The dynamics of the Z2 Vortex and Z2 charge

e 72 vortex (charge) can only move in the same sub-
plaquette:

 The hopping operators for Z2 vortex (charge) are

o; and o’ > —o 9o @ .
| | gla?
— IE ® Y ¥ got ]

X = X
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The mutual semion statistics between the Z.2
Vortex and Z2 charge

* When an excitation (Z2 vortex) in even-plaquette
move around an excitation (Z2 charge) in odd-

plaquette, the operator is o)

|+ey

— Y A
R =0701.,0

&, i+6,+€,

e jtis -1 with an excitation on it
F=-1 ¢

e This is the character for
semion statistics

X. G. Wen, PRD68, 024501 (2003).




Topological degeneracy on a torus
(even-by-even lattice) :

 On an even-by-even lattice, there are totally

N states
* Under the constaint, H F°=1and [] R’=1

+| =even i, +1,=0dd

the number of states are only 2" /4
K it must be four-

xTly

* For the ground state

fold degeneracy. i




Topological degeneracy on a torus:
even-by-odd, odd-by-even, odd-by-odd lattices

* There is only one constaint, there are only
[1F =
i

 For the ground state K =1 ,itis two-fold
degeneracy.




4. First example of Z2 topological order
- Quantum Dimer Models

Square lattice (Rokhsar-Kivelson, ’88)

H= 3 [T(ED (S +He) +V (1D @+ 12 D)

Plaquette

Assume dimer configurations are orthogonal

Leung et al, ‘96

V/J
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QDM on triangular lattice

Moessner and Sondhi, ’01

RVB spin liquid with gapped spectrum

8

|
|
~0.7

Topological degeneracy



Rokhsar-Kivelson (RK) model
on a triangular lattice

Hgr= 2t (/ /><._.. +h>
+E 0 :"T;"‘x/></i:if“7'

+h<9

4y U < \ /><- +h(,>

 The ground state of “Rokhsar-Kivelson” Type RVB
spin liquid is a Z2 topological order : all excitations
are gapped; four-fold degeneracy on a torus

D.S. Rokhsar and S. Kivelson, Phys. Rev. Lett. 61, 2376 (1988)
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991);
X. G. Wen, Phys. Rev. B 44, 2664 (1991).



Topological degeneracy of RK model
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S. Exchange statistics in (2+1)D

Y \s Y,
N A t ) N/
Q . 1 Y 5K X
A T T-!

X1
X1

e In(3+1)D, T-'=T, while in 2+1)D 7! Z T
e If T71'=T then T2 =1, and the only types of particles are
bosons and fermions.



The Braid Group

In (2+1)D, we should consider the braid group:




Abelian Anyons

e Different elements of the braid group correspond to disconnected
subspaces of trajectories in space-time.

e Possible choice: weight them by different overall phase factors
(Leinaas and Myrrheim, Wilczek).

+ el \ +elt + .

\ )

e These phase factors realise an Abelian representation of the braid group.
E.g q = p/m for a Fractional Quantum Hall state at a filling factor v = 1/m.

* The ground state degeneracy on a torus: m-fold degenerate ground states
for FQHE (Haldane, Rezayi ’88, Wen ’90).




Non-Abelian Anyons

Exchanging particles 1 and 2: Exchanging particles 2 and 3:

wa B Mél?wb wa — M(?g?t/)b

e Matrices M2 and M?3 need not commute, hence Non-Abelian Statistics.

 Matrices M form a higher-dimensional representation of the braid-group.

* For fixed particle positions, we have a non-trivial multi-dimensional Hilbert
space where we can store information



v =5/2 isbelieved tobe MR = U(1) x Ising

U(1) is a familiar Abelian factor due to electric charge

Ising particle types: |, o0, v

Fusionrules: Ixl=1, Ixo=0, |Ixy=y,

oxo=l+y, oxy=0, yxy=I

quasiholes carry anyonic charge : (¢/4, o)

electrons carry anyonic charge : (—€, )

N quasiholes carry anyonic charge : (ne/ 4, o) for nodd
(ne/4,1 or ) for neven



v =12/5 isbelieved tobe RR, = U(1)x Pf, = U(1)xFib
(Note : Fibonacci anyons can simulate a universal quantum computer.)

Fib particle types : |, ¢

Fusionrules: Ix| =1, Ixg=¢, exe=1+¢
quasiholes carry anyonic charge : (€/5, £)

electrons carry anyonic charge : (-6, |)

N quasiholes carry anyonic charge : (ne/5, | or &)
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