Spin mixing dynamics in an atomic spin-1 Bose condensate

张文献 复旦大学光科学与工程系 郑州,2008年9月

Outline

- Bose-Einstein condensation (BEC)
- Interacting spin-1 atomic gases
- Spin mixing dynamics under SMA
- Dynamical instability induced spontaneous spin domains
- Summary

BEC in phase diagram

Log Temperature

Log Density

Roadmap to BEC

Nobel lecture, Ketterle

Signal of BEC

JILA

Spin-1 BEC experiments

PRL 80, 2027 (1998).

PRL 87, 010404 (2001).

• MIT, W. Ketterle (1998)

- GaTech, M. S. Chapman (2001)
- U. Hamburg, K. Sengstock
- Gakushuin Univ., T. Hirano
- Berkeley, D. M. Stamper-Kurn

Hyperfine structure

The atomic ground state is |F=1>, if kT << $h V_{HF}$.

Spin-1 atoms collisions

$$V_F = \frac{4\pi\hbar^2}{m} \left(a_0 \left| F_{tot} = 0 \right\rangle \left\langle F_{tot} = 0 \right| + a_2 \left| F_{tot} = 2 \right\rangle \left\langle F_{tot} = 2 \right| \right)$$

Dilute atomic gas

- Low temperature
- 2-body collision dominates
- ■*s*-wave scattering length
- •Symmetric in spatial degree of freedom
- •Symmetric in spin degree of freedom (No a_1)

Spin interaction

$$|F_1F_2Fm_F\rangle \rightarrow |F_1F_2m_1m_2\rangle$$

$$V_F = c_0 \mathbf{I} + c_2 \mathbf{F} \bullet \mathbf{F}$$

$$\uparrow$$
Spin independent

Spin dependent

CG coefficient

$$c_{0} = \frac{4\pi\hbar^{2}}{3m}(a_{0} + 2a_{2})$$

$$c_{2} = \frac{4\pi\hbar^{2}}{3m}(a_{2} - a_{0})$$

PRL 81, 742 (1998)

Hamiltonian

$$H = \int d\vec{r} \psi_i^2 \left(-\frac{\hbar^2}{2m} \nabla + V_{ext}(\vec{r}) \right) \psi_i + \frac{c_0}{2} \psi_i^{\text{m}} \psi_j \psi_j \psi_i$$
$$+ \frac{c_2}{2} \psi_i^{\text{m}} \psi_k \left(F_{\eta} \right)_{ij} \left(F_{\eta} \right)_{kl} \psi_j \psi_l,$$

where

$$F_{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad F_{y} = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad F_{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
$$H, N = 0, \qquad \begin{bmatrix} H, M \end{bmatrix} = 0, \qquad M = \langle F_{z} \rangle$$
PRL 81 742 (1998) L Phy

PRL **81**, 742 (1998), J. Phys. Soc. Jpn. **67**, 1822 (1998), PRL **81**, 5257 (1998).

٠

Zeeman effect

$$H = \int d\vec{r} \,\psi_i^2 \left(-\frac{\hbar^2}{2m} \nabla + V_{\text{ext}}(\vec{r}) \right) \psi_i + \psi_i H_{ZM} \psi_i$$
$$+ \frac{c_0}{2} \psi_i^{\text{m}} \psi_j \psi_j \psi_i + \frac{c_2}{2} \psi_i^{\text{m}} \psi_k \left(F_\eta \right)_{ij} \left(F_\eta \right)_{kl} \psi_j \psi_l,$$

4.1

. . . .

-

. . .

Zeeman effects

Linear :
$$\eta_0 = \frac{E_- - E_+}{2}$$

Quadratic :
$$\delta = \frac{E_+ + E_- - 2E_0}{2}$$

 $|0\rangle$

 $|-\rangle$

 $|+\rangle$

Collisions in B field

Mean field approximation

$$\Psi = \left\langle \Psi \right\rangle + \delta \Psi$$

Order parameter $\Phi = \langle \hat{\Psi} \rangle$: Condensate mean field wave function Classical field description

$$H_{MF} = \int d\vec{r} \sum_{i} \Phi_{i}^{*} \left(-\frac{\hbar^{2}}{2m} \nabla^{2} + V_{ext}(\vec{r}) \right) \Phi_{i} + \Phi_{i}^{*} H_{ZM} \Phi_{i}$$
$$+ \frac{c_{0}}{2} \left(\sum_{i} |\Phi_{i}|^{2} \right)^{2} + \frac{c_{2}}{2} \sum_{i,j,k,l} \Phi_{i}^{*} \left(F_{\eta} \right)_{ij} \Phi_{j} \Phi_{k}^{*} \left(F_{\eta} \right)_{kl} \Phi_{l},$$
$$\downarrow$$
$$\downarrow$$
$$f^{2}$$

Single mode approx.

AND BEC size < spin healing length

$$\begin{pmatrix} \Phi_{+}(\vec{r}) \\ \Phi_{0}(\vec{r}) \\ \Phi_{-}(\vec{r}) \end{pmatrix} = \Phi_{SMA}(\vec{r}) \begin{pmatrix} \xi_{+} \\ \xi_{0} \\ \xi_{-} \end{pmatrix}$$

 Separation of spatial and spin degree of freedom
 Three components share the same spatial wave function Φ_{SMA}

Two simple cases:

 $c_0 \square |c_2|$

1. Small spin-1 condensate

2. Homogeneous spin-1 condensate (valid at short times)

SMA orbits in B fields

SMA orbits in B fields

Spin evolution

Spin Evolution

Dynamical stability

Methods:

•Effective potential method (analytical and qualitative for uniform system)

•Bogoliubov eigen-mode (analytical and quantitative for uniform system)

•Numerical simulation (trapped system)

Classical version

Interaction picture (moving reference frame)

orbit in lab frame \rightarrow stationary point in moving frame

$$\mathcal{E} = \frac{1}{2}c_0n^2 + \frac{1}{2}c_2m^2 + \frac{1}{2}c_2\rho_0\left[\left(1-\rho_0\right) + \sqrt{\left(1-\rho_0\right)^2 - m^2\cos\theta}\right]$$

$$\frac{1}{2}c_2\left(f_x^2 + f_y^2\right)$$
Lab frame
$$\mathcal{E}_I = \mathcal{E} - \mu n - \eta m - \delta_x f_x - \delta_y f_y$$
Moving frame

• Stable, semi-positive-definite of Hessian matrix $(c_2 > 0)$

$$D = \nabla_{n,m,f_x,f_y} \nabla_{n,m,f_x,f_y} \mathcal{E}_{h}$$

• Unstable, otherwise $(c_2 < 0)$

Quantum version

Energy in mov. frame,
$$\mathcal{E}_{I} = \mathcal{E}_{I} (\Phi) = \mathcal{E}_{I} (\Phi^{(0)} + \vec{x})$$

= $\mathcal{E}_{I}^{(0)} (\Phi^{(0)}) + \vec{x}^{T} \Box M \Box \vec{x} + \cdots$

where,	$\left(\Phi_{+}^{*}\right)$		$\left(\Phi_{+}^{*(0)} ight)$		$\left(x_{+}^{*} \right)$
	Φ_{0}^{*}		$\Phi_0^{*(0)}$		x_{0}^{*}
	Φ_{-}^{*}	_	$\Phi_{-}^{*(0)}$		x_{-}^{*}
	Φ_+	_	$\Phi_{+}^{(0)}$	Т	<i>X</i> ₊
	Φ_0		$\Phi_{0}^{(0)}$		x_0
	$\left(\Phi_{-} \right)$		$\left(\Phi_{-}^{(0)}\right)$		$\left(x_{-} \right)$

$$x_j \propto \exp(i\omega t - i\vec{k}\,\Box\vec{r}\,)$$

- Stable, if ω is real (c₂ > 0)
- Unstable, otherwise $(c_2 < 0)$

Linear response theory

Bogoliubov spectrum (I)

Characteristic eq.

$$M - \hbar \omega \mathbf{I}_{6\times 6} = 0, \quad M = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix},$$

$$A = \varepsilon_{k} \mathbf{I} + \begin{pmatrix} (c_{0} + c_{2})n_{+} + c_{2}n_{0} & c_{0}\Phi_{0}^{*}\Phi_{+} + c_{2}\Phi_{0}\Phi_{-}^{*} & (c_{0} - c_{2})\Phi_{-}^{*}\Phi_{+} \\ c_{0}\Phi_{+}^{*}\Phi_{0} + c_{2}\Phi_{0}^{*}\Phi_{-} & c_{0}n_{0} + c_{2}(n_{+} + n_{-}) & c_{0}\Phi_{-}^{*}\Phi_{0} + c_{2}\Phi_{0}^{*}\Phi_{+} \\ (c_{0} - c_{2})\Phi_{+}^{*}\Phi_{-} & c_{0}\Phi_{0}^{*}\Phi_{-} + c_{2}\Phi_{+}^{*}\Phi_{0} & (c_{0} + c_{2})n_{-} + c_{2}n_{+} \end{pmatrix} \qquad B = \begin{pmatrix} (c_{0} + c_{2})\Phi_{+}^{2} & (c_{0} + c_{2})\Phi_{+}\Phi_{0} & (c_{0} - c_{2})\Phi_{+}\Phi_{-} + c_{2}\Phi_{0}^{2} \\ (c_{0} - c_{2})\Phi_{+}\Phi_{-} + c_{2}\Phi_{0}^{2} & (c_{0} + c_{2})\Phi_{+}\Phi_{-} & (c_{0} + c_{2})\Phi_{0}\Phi_{-} \\ (c_{0} - c_{2})\Phi_{+}\Phi_{-} + c_{2}\Phi_{0}^{2} & (c_{0} + c_{2})\Phi_{0}\Phi_{-} & (c_{0} + c_{2})\Phi_{-}^{2} \end{pmatrix}$$

$$\left(\hbar \omega \right)_{1,2}^{2} = \varepsilon_{k} \left[\left(c_{0}n + c_{2}n + \varepsilon_{k} \right) + n\sqrt{\left(c_{0} - c_{2} \right)^{2} + 4c_{0}c_{2}f^{2}} \right]$$

$$\left(\hbar \omega \right)_{3,4}^{2} = \varepsilon_{k} \left[\left(c_{0}n + c_{2}n + \varepsilon_{k} \right) - n\sqrt{\left(c_{0} - c_{2} \right)^{2} + 4c_{0}c_{2}f^{2}} \right]$$

$$\left(\hbar \omega \right)_{5,6}^{2} = \left(\varepsilon_{k} + c_{2}n \right)^{2} - c_{2}^{2}n^{2} \left(1 - f^{2} \right)$$

Bogoliubov spectrum (II)

Results

Domain formation

 $d\varepsilon/dm > 0$, *m* decreases $d\varepsilon/dm < 0$, *m* increases

Acknowledgement

- 😳 Prof. L. You
- [©] Prof. M. S. Chapman
- ⊙ Dr. M.-S. Chang
- 🙂 Dr. S. Yi
- 🙂 Dr. D.-L. Zhou

\$ NSF, NASA

✓ Coherent spin mixing dynamics in B fields

Dynamical instability and spontaneous domain formation

