News

Bethe-Ansatz专家管习文来我组作系列报告[2017-11-10]
Topological Phase Transition and Charge Pumping in a One-Dimensional Periodically Driven Optical Lattice[2017-07-30]
山西大学2017研究生毕业典礼[2017-06-25]
CAT小组刘彦霞同学通过博士学位论文答辩[2017-06-03]
王利CSC公派访学结束回所工作[2017-05-22]
尹相国回到冷原子理论研究组工作[2017-04-13]
Spectroscopy and spin dynamics for strongly interacting few spinor bosons in one-dimensional traps[2017-04-06]
Collective excitation of a trapped Bose-Einstein condensate with spin-orbit coupling [2017-03-16]
Quantum walks in the commensurate off-diagonal AAH model[2017-02-03]
刘娜获得2016硕士国家奖学金[2017-01-12]

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

发布者: admin 发布时间:2010-06-06
  

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

Sebastian Will,Thorsten Best,Ulrich Schneider,Lucia Hackermüller,Dirk-Sören Lühmann & Immanuel Bloch

Nature,465, 197(2010) DOI: doi:10.1038/nature09036

Received 01 February 2010 Accepted 17 March 2010
Interactions lie at the heart of correlated many-body quantum phases1, 2, 3. Typically, the interactions between microscopic particles are described as two-body interactions. However, it has been shown that higher-order multi-body interactions could give rise to novel quantum phases with intriguing properties. So far, multi-body interactions have been observed as inelastic loss resonances in three- and four-body recombinations of atom–atom and atom–molecule collisions4, 5, 6. Here we demonstrate the presence of effective multi-body interactions7 in a system of ultracold bosonic atoms in a three-dimensional optical lattice, emerging through virtual transitions of particles from the lowest energy band to higher energy bands. We observe such interactions up to the six-body case in time-resolved traces of quantum phase revivals8, 9, 10, 11, using an atom interferometric technique that allows us to precisely measure the absolute energies of atom number states at a lattice site. In addition, we show that the spectral content of these time traces can reveal the atom number statistics at a lattice site, similar to foundational experiments in cavity quantum electrodynamics that yield the statistics of a cavity photon field12. Our precision measurement of multi-body interaction energies provides crucial input for the comparison of optical-lattice quantum simulators with many-body quantum theory.

© 2004-2010 CAT@Shanxi University