News

Bethe-Ansatz专家管习文来我组作系列报告[2017-11-10]
Topological Phase Transition and Charge Pumping in a One-Dimensional Periodically Driven Optical Lattice[2017-07-30]
山西大学2017研究生毕业典礼[2017-06-25]
CAT小组刘彦霞同学通过博士学位论文答辩[2017-06-03]
王利CSC公派访学结束回所工作[2017-05-22]
尹相国回到冷原子理论研究组工作[2017-04-13]
Spectroscopy and spin dynamics for strongly interacting few spinor bosons in one-dimensional traps[2017-04-06]
Collective excitation of a trapped Bose-Einstein condensate with spin-orbit coupling [2017-03-16]
Quantum walks in the commensurate off-diagonal AAH model[2017-02-03]
刘娜获得2016硕士国家奖学金[2017-01-12]

Interacting electrons in one dimension beyond the Luttinger-liquid limit

发布者: admin 发布时间:2010-06-06
  

Letter abstract


Nature Physics
Published online: 30 May 2010 | doi:10.1038/nphys1678

 

Interacting electrons in one dimension beyond the Luttinger-liquid limit

Gilad Barak1, Hadar Steinberg2, Loren N. Pfeiffer3, Ken W. West3, Leonid Glazman4, Felix von Oppen5 & Amir Yacoby1

 

Over the past several decades, Luttinger-liquid theory has a framework for interacting electrons in one dimension. However, the validity of the theory is strictly limited to low-energy excitations where the electron dispersion is linear. Interacting electrons in one-dimension beyond the Luttinger-liquid limit, where the underlying dispersion of electrons is no longer linear, exhibit intriguing manifestations of the interactions, which have direct implications on many experimental systems. For example, consider the energy relaxation of particles or holes, the unoccupied states in a Fermi sea. Whereas in Luttinger-liquid theory such energy relaxation is strictly forbidden, in a nonlinearly dispersing one-dimensional electron system energy relaxation is allowed but very different for particles and holes. Here, we use momentum-resolved tunnelling to selectively inject energetic particles and holes into a quantum wire and study their relaxation processes. Our measurements confirm that energetic particles undergo fast relaxation to a thermalized distribution and holes retain their original injection energy, thereby providing a clear demonstration of electron dynamics beyond the Luttinger limit. A model of thermalization derived in the limit of weak interactions shows quantitative agreement with the experimental findings.


© 2004-2010 CAT@Shanxi University