News

Bethe-Ansatz专家管习文来我组作系列报告[2017-11-10]
Topological Phase Transition and Charge Pumping in a One-Dimensional Periodically Driven Optical Lattice[2017-07-30]
山西大学2017研究生毕业典礼[2017-06-25]
CAT小组刘彦霞同学通过博士学位论文答辩[2017-06-03]
王利CSC公派访学结束回所工作[2017-05-22]
尹相国回到冷原子理论研究组工作[2017-04-13]
Spectroscopy and spin dynamics for strongly interacting few spinor bosons in one-dimensional traps[2017-04-06]
Collective excitation of a trapped Bose-Einstein condensate with spin-orbit coupling [2017-03-16]
Quantum walks in the commensurate off-diagonal AAH model[2017-02-03]
刘娜获得2016硕士国家奖学金[2017-01-12]

Low-temperature physics: Paired in one dimension

发布者: admin 发布时间:2010-10-22
  

Nature News and Views

Nature 467, 535 (2010)

Low-temperature physics: Paired in one dimension

Immanuel Bloch

The trend towards using ultracold atomic gases to explore emergent phenomena in many-body systems continues to gain momentum. This time around, they have been used to explore novel pairing mechanisms in one dimension. See Nature Letter


Nature 467, 567(2010)



Spin-imbalance in a one-dimensional Fermi gas

Yean-an Liao, Ann Sophie C. Rittner, Tobias Paprotta, Wenhui Li, Guthrie B. Partridge, Randall G. Hulet, Stefan K. Baur & Erich J. Mueller

Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell1 and Larkin and Ovchinnikov2 (FFLO) proposed an exotic pairing mechanism in which magnetism is accommodated by the formation of pairs with finite momentum. Despite intense theoretical and experimental efforts, however, polarized superconductivity remains largely elusive3. Unlike the three-dimensional (3D) case, theories predict that in one dimension (1D) a state with FFLO correlations occupies a major part of the phase diagram4, 5, 6, 7, 8, 9, 10, 11, 12
. Here we report experimental measurements of density profiles of a two-spin mixture of ultracold 6Li atoms trapped in an array of 1D tubes (a system analogous to electrons in 1D wires). At finite spin imbalance, the system phase separates with an inverted phase profile, as compared to the 3D case. In 1D, we find a partially polarized core surrounded by wings which, depending on the degree of polarization, are composed of either a completely paired or a fully polarized Fermi gas. Our work paves the way to direct observation and characterization of FFLO pairing.


© 2004-2010 CAT@Shanxi University